E2011: Theoretical fundamentals of computer science
Introduction to algorithms

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

Outline

© Algorithms

@ Pseudocode

© Analysis of algorithms

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of computel

m]

=

Vlad Popovici, Ph.

(Fac. of Science -

E2011: Theoretical fundamentals of computel

DA

Algorithm

@ a step-by-step procedure to solve a task/problem

e word algorithm originates from the Latin version of the name
Muhammad ibn Misa al-Khwarizmi (IX-th century) - a highly
influential Arab mathematician

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 4/29

@ an algorithm has an input and an output
@ the procedure describes how the input is used to obtain the output

@ attributes of an algorithm:

> correctness
> efficiency
> complexity

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 5/29

Example - Greatest Common Divisor

(one of the oldest algorithms - Euclid (I1I-IV centuries BC))

Algorithm 1 Euclid’s algorithm

Input: a, b € N*
Output: GCD
1. r<amodb

2: while r # 0 do > We have the answer if r is 0
3 a<b

4 b+r

5 r< amodb

6: end while

7. GCD + b > Thegedis b

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 6/29

Example: GCD of a =72 and b =120

while r # 0 do . 3 b
Z: tr’ before “while” | 72 | 72 | 120
o amod b iteration 1 48 | 120 | 72

end while iteration 2 24 | 72 | 48

GCD < b iteration 3 0| 48 | 24

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 7/29

Pseudocode

a means of describing an algorithm

@ not directly interpretable by a computer; needs to be implemented in
a programming language

@ has a less strict syntax and vocabulary than a programming language

@ it is independent on the programming language

@ shortcuts are allowed if their meaning is clear (e.g.
0* = arg ming Q(0))

@ describes the solution with enough granularity so it can be
implemented

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 8/29

Main ingredients of the pseudocode

@ variables - store some values (e.g. x,y); may refer to simple (e.g.
scalar) values, or more complicated data structures (vectors, matrices,
lists, etc.)

@ input to specify the required values for the algorithm to compute the
output

@ variables are assigned values: x <— 50 or x < y, but values are never
assigned variables or other values: 50 < x is a nonsense

@ mathematical operators can be used as usual

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 9/29

Main ingredients of the pseudocode

If-then-else structure

@ specifies the conditional

execution of a part (branch) of if (condition) then

the code code for (condition) is True
@ the else part may be missing else
e the (condition) is a Boolean code for {condition) is False
predicate that is evaluated to end if

either True or False (or,
equivalently, to # 0 or 0.)

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 10 /29

Main ingredients of the pseudocode

While-do loop

@ specifies a repeated execution of
a set of operations (instruction
block)

@ the block is executed as long as
the (condition) is True and no
forced exit is encountered

while (condition) do
instruction

end while

o if the condition is False at the
very beginning, the block is not
executed at all

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 11/29

Main ingredients of the pseudocode

Repeat-until loop

@ specifies a repeated execution of

an instruction block
repeat

@ the block is executed as long as instruction

the (condition) is False and no

forced exit is encountered until (condition)

@ the block is executed at least
once

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 12 /29

Main ingredients of the pseudocode

For loop

@ executes a block for for (iterator) do
a given number of instructions
steps (unless forced end for
exit is encountered) for all (iterator) do
o typically used with instructions
vectors, lists, etc end for

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

Examples:

sum <+ 0

fori=1,...,ndo
sum < sum + Xx;

end for

for all a € Ado
print(a)

end for

13/29

Main ingredients of the pseudocode

Procedures

@ groups a set of instructions into a construct that can be invoked
(called) with or without parameters

@ the parameters may function as input/output or in/out parameters

procedure (name)((params))
block
end procedure

Functions
@ special procedures with only input parameters which returns a value

e much like the mathematical equivalent (e.g. sin(x))

function (name)((params))
body
return value

end function

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 14 /29

Main ingredients of the pseudocode

@ continue: used in loops; indicates a jump to the test condition, any
instructions after it are not executed

@ break: used in loops; indicates an exit from the loop, continuing
execution with the instruction after the loop

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 15 /29

v/x with precision € > 0 - binary search

Algorithm 2 /x via binary search

1. function sQrT1(x € Ry, € > 0) 10: if middle® > x then
2: low <0 11: high < middle

3 if x > 1 then 12: else

4: high < x 13: low < middle

5: else 14: end if

6 high <1 15: end while

7 end if 16: return low

8 while high — low > ¢ do 17: end function

9 middle = 0.5(high— low)

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 16 /29

V/x with precision € > 0 - Babylonian method

Algorithm 3 /x - Babylonian algorithm
1. function SQRT2(x € Ry, € > 0)

2 ro < x/2 > some initial guess

3 rl%(r0+x/ro)/2

4 while |r; — rp| > € do

5: n<n

6

7

8

9

n < (I’o +X/r0)/2
end while
return
: end function

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 17 /29

@ there might be several algorithms for a given problem
@ the choice of the "best” algorithm is not always obvious

@ execution time, memory requirements, implementation options, etc
are factors to keep in mind

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 18 /29

Flowcharts: alternative to pseudocode

(START ¢ INPUT: OUTPUT:
¢ END variables variables

Instruction or ‘ Procedure W
block of
instructions
False True

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 19 /29

GCD - with flowchart

Input: a, b € N*
Output: GCD

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

1
2
3
4:
5
6
7

: r<amodb
. while r # 0 do

a+ b
b+« r
r< amodb

- end while
: GCD «~ b

INPUT:
a, b positive
integers

r — amodb

a-b
be—r
r —amodb

OUTPUT ‘GCD
is*

20 /29

Analysis of algorithms

What's more important than performance?

@ modularity @ user-friendliness
@ correctness @ programmer time
@ maintainability e simplicity

o functionality @ extensibility

@ robustness @ reliability

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 21/29

Insertion sort

Problem: sort a sequence of numbers [a;],i = 1,..., N in increasing order.

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 22/29

Insertion sort

Algorithm 4 Insertion sort

Input: [5],i=1,...,N

Output: sorted [a;]
forj=2,...,Ndo

key < aj . ; | N
a, —>—>—? |

i+—j—1
while / > 0 AND a; > key do o
ajy1 < aj
f—i—1
end while
ajr1 < key
end for

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 23/29

Running time analysis

@ depends on the ordering of the sequence: if it's ordered already, we
just sweep once through it

@ idea 1: find the dependency of the running time on the sequence size
@ idea 2: find the upper limit of the running time

@ idea 3: ignore machine-dependent part, concentrate on the intrinsic
time

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 24/29

Running time analysis - two scenarios
T(n) =7
@ worst case scenario: gives the upper limit on the running time

@ average-case: gives the expected running time

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 25/29

Running time analysis - asymptotic analysis

Main idea

Study
T(n) as n — o

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of computel

"Big-Oh notation” - complexity function

e O(g(n)) ={f(n)|3c1,c2 >0,nm € N: 0 < c18(n) < f(n) <
czg(n),Vn > nO}
@ e.g. for polynomial functions, consider just the dominating term:

an® 4+ bn® + cn+d = O(n®),Va, b,c,d € R

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 27/29

Complexity of the insertion sort algorithm

@ worst case: the sequence is reversed (decreasing order)

T(n) =3 0()=0(n?)
j=2

@ average case: consider all permutations of n elements as equally
probable

T(n) =) 0(j/2) = O(n?)
j=2

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 28/29

Questions?

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of computel

	Algorithms
	Pseudocode

	Analysis of algorithms

