E2011: Theoretical fundamentals of computer science Introduction to algorithms - Additional exercises

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

Problem 1

Search problem

Given a sequence of n numbers, $A=\left[a_{1}, \ldots, a_{n}\right]$ and a value v, find
(1) whether v appears in A and, if yes, output its position, otherwise output "value not found" message;
(2) whether v appears in A and, if yes, output its position, otherwise output the closest value in A to v

- identify the input and output
- express the solution

```
Algorithm 1 Find value in a sequence - part 1
Input: \(n \in \mathbb{N}, A=\left[a_{1}, \ldots, a_{n}\right], v \in \mathbb{R}\)
Output: \(i\) such that \(a_{i}=v\) or text
    for \(i=1, \ldots, n\) do
        if \(a_{k}=v\) then
        return \(i\)
    end if
    end for
    print "value not found!"
```


Problem 2

Selection sort

Implement the following sequence sorting algorithm for n values $A=\left[a_{1}, \ldots, a_{n}\right]$: first find the smallest element of A and exchange it with the element in a_{1}. Then find the second smallest element of A, and exchange it with a_{2}. Continue in this manner for the first $n-1$ elements of A.
What needs to be changed to obtain a decreasing ordered sequence?

Solution to Problem 2

Algorithm 2 Find value in a sequence - part 1
Input: $n \in \mathbb{N}, A=\left[a_{1}, \ldots, a_{n}\right] \in \mathbb{R}$
Output: ordered sequence A
for $i=1, \ldots, n-1$ do
$\min \leftarrow i$
for $j=i+1, \ldots, n$ do
if $a_{j}<a_{\text {min }}$ then
$\min \leftarrow j$
end if
end for
if $\min \neq i$ then
\triangleright swapping values is needed only if a_{i} is not already minimum $t m p \leftarrow a_{i} \quad \triangleright$ these 3 lines are for swapping values $a_{i} \leftarrow a_{\text {min }}$
$a_{\text {min }} \leftarrow t m p$
end if
end for

Problem 3

Binary addition

Consider two numbers A and B represented in binary as two vectors of bits $A=\left[a_{1} a_{2} \ldots a_{n}\right]$ and $B=\left[b_{1} b_{2} \ldots b_{n}\right]$ with most significant bit being at position 1 and least significant one at position n. Write the pseudocode to perform the addition of the two numbers, such that the result $C=A+B$ is represented as a $n+1$ vector of bits $C=\left[c_{1} c_{2} \ldots c_{n+1}\right]$.

Solution to Problem 3

Input: $n \in \mathbb{N}, A=\left[a_{1} a_{2} \ldots a_{n}\right], B=\left[b_{1} b_{2} \ldots b_{n}\right]$
Output: $C=A+B, C=\left[c_{1} c_{2} \ldots c_{n+1}\right]$
carry $\leftarrow 0$
for $i=n, n-1, \ldots, 1$ do
$c_{i+1} \leftarrow\left(a_{i}+b_{i}+\right.$ carry $) \bmod 2$
if $a_{i}+b_{i}+$ carry ≥ 2 then
carry $\leftarrow 1$
else

$$
\text { carry } \leftarrow 0
$$

end if
end for
$c_{1} \leftarrow$ carry

