E2011: Theoretical fundamentals of computer science Introduction to algorithms - Additional exercises

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem 1

Search problem

Given a sequence of *n* numbers, $A = [a_1, \ldots, a_n]$ and a value *v*, find

- whether v appears in A and, if yes, output its position, otherwise output "value not found" message;
- whether v appears in A and, if yes, output its position, otherwise output the closest value in A to v
 - identify the input and output
 - express the solution

Algorithm 1 Find value in a sequence - part 1Input: $n \in \mathbb{N}, A = [a_1, \ldots, a_n], v \in \mathbb{R}$ Output: i such that $a_i = v$ or textfor $i = 1, \ldots, n$ doif $a_k = v$ then
return i
end ifend for
print "value not found!"

< 回 > < 回 > < 回 >

Problem 2

Selection sort

Implement the following sequence sorting algorithm for n values $A = [a_1, \ldots, a_n]$: first find the smallest element of A and exchange it with the element in a_1 . Then find the second smallest element of A, and exchange it with a_2 . Continue in this manner for the first n - 1 elements of A.

What needs to be changed to obtain a decreasing ordered sequence?

Solution to Problem 2

Algorithm 2 Find value in a sequence - part 1 **Input:** $n \in \mathbb{N}, A = [a_1, \ldots, a_n] \in \mathbb{R}$ **Output:** ordered sequence A for i = 1, ..., n - 1 do $min \leftarrow i$ for i = i + 1, ..., n do if $a_i < a_{min}$ then $min \leftarrow i$ end if end for if $min \neq i$ then \triangleright swapping values is needed only if a_i is not already minimum \triangleright these 3 lines are for swapping values $tmp \leftarrow a_i$ $a_i \leftarrow a_{min}$ $a_{min} \leftarrow tmp$ end if

end for

Problem 3

Binary addition

Consider two numbers A and B represented in binary as two vectors of bits $A = [a_1a_2...a_n]$ and $B = [b_1b_2...b_n]$ with most significant bit being at position 1 and least significant one at position n. Write the pseudocode to perform the addition of the two numbers, such that the result C = A + B is represented as a n + 1 vector of bits $C = [c_1c_2...c_{n+1}]$.

Solution to Problem 3

Input:
$$n \in \mathbb{N}$$
, $A = [a_1a_2...a_n]$, $B = [b_1b_2...b_n]$
Output: $C = A + B$, $C = [c_1c_2...c_{n+1}]$
 $carry \leftarrow 0$
for $i = n, n - 1, ..., 1$ do
 $c_{i+1} \leftarrow (a_i + b_i + carry) \mod 2$
if $a_i + b_i + carry \ge 2$ then
 $carry \leftarrow 1$
else
 $carry \leftarrow 0$
end if
end for
 $c_1 \leftarrow carry$

2

(日)