E2011: Theoretical fundamentals of computer science: Basic notions of graph theory

Vlad Popovici, Ph.D.
Fac. of Science - RECETOX

Applications

- Molecular models
- Computer networks
- Planning and scheduling
- Solve shortest path problems between cities
- Electrical circuits
- ...and many, many, others...

Some more examples

- Navigation/GPS: find the shortest path (using algorithm's like Dijkstra)
- Games: e.g. chess - choices can be arrange in a treestructure and best movement (within a given horizon) can be selected
- Computation distribution across machines of a cluster
- Neural networks

Euler and the 7 bridges of Königsberg

(a) Königsberg in 1736

(b) Euler's graphical representation

Definitions - graphs

- A graph $G=(V, E)$ is an ordered pairs of a set of vertices V and a set of edges E.
- If needed, the notation could
 be $V(G)$ to specify the set of vertices of graph G, and $E(G)$ for the set of edges of the same graph.

$$
\begin{aligned}
& V=\{1,2, A, z, \theta\} \\
& E=\{\{1,2\},\{1, A\},\{A, z\},\{\theta, z\}\}
\end{aligned}
$$

Definitions - edge types

- Directed edge: an ordered set of vertices, denoted as a tuple (u, v)
- Undirected edge: an unordered set of vertices, represented as a set $\{u, v\}$

Definitions - edge type

- Loop: an edge $\{u, v\}$ (or $(u, v))$ with $u=v$
- Multiple edges: two or more
 edges connecting the same two vertices

Definitions - graph type

- Undirected (simple) graph: a graph $G(V, E), V \neq \varnothing$, and E a set of undirected edges
- Directed graph: the set of edges contains oriented edges
- Multigraph: multiple edges are allowed
- Pseudograph: a multigraph with loops
- and combinations...

Terminology - undirected graphs

For an undirected graph $G(V, E)$:

- u and v are called adjacent if $e=\{u, v\} \in E ; e$ is called incident with u and $v ; u$ and v are called endpoints of e
- the degree of a vertex $v(\operatorname{deg}(v))$ is the number of edges incident on v

- pendant vertex: $\operatorname{deg}(v)=1$

$$
\operatorname{deg}(u)=2, \forall u \in\{1,3,4\}
$$

- isolated vertex: $\operatorname{deg}(v)=0$

Terminology - directed graphs

For a directed graph $G(V, E)$:

- for $e=(u, v) \in E ; u$ is adjacent to v; v is adjacent from u; u is initial vertex and v is terminal vertex
- the in-degree of a vertex v $\left(\operatorname{deg}^{-}(v)\right.$) is the number of edges
 incident with v terminal vertex
- the out-degree of a vertex v $\left(\operatorname{deg}^{+}(v)\right.$) is the number of edges incident with v initial vertex

$$
\begin{aligned}
\operatorname{deg}^{+}(4) & =0 \\
\operatorname{deg}^{-}(4) & =2 \\
\operatorname{deg}^{+}(1) & =1 \\
\operatorname{deg}^{-}(1) & =1
\end{aligned}
$$

Some basic results

- Theorem (Euler): in an undirected graph,
$\sum \operatorname{deg}(v)=2|E|$ (handshaking theorem)
$v \in V$
- Theorem (Euler): an undirected graph has an even number of vertices with odd degree
- Theorem: in a directed graph,
$\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=|E|$

Special cases

- Complete graph: K_{n} is a simple graph where any two vertices are connected by an edge

- Cycle: $C_{n}, n \geq 3$ consists of n vertices such that

$$
\begin{aligned}
& \left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\},\left\{v_{n}, v_{1}\right\} \in E \\
& C_{3}=K_{3} \\
& C_{4}=\{1,2,3,4\}
\end{aligned}
$$

Special cases - Bipartite graph

- A simple graph G for which the vertices V set can be partitioned
$V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\varnothing$, such that all edges have one end in V_{1} and the other one in V_{2}
- Complete bipartite graph $K_{m, n}$ is a bipartite graph $\left(\left|V_{1}\right|=m,\left|V_{2}\right|=n\right)$ in which all the vertices in one partition are connected to all the vertices in the second partition

Subgraphs

- Let $G=(V, E)$ be a graph.
- A graph $H=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$

$$
H_{1}=\left(V_{1}^{\prime}, E_{1}^{\prime}\right) \quad H_{2}=\left(V_{2}^{\prime}, E_{2}^{\prime}\right)
$$

Graph union

- Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs
- Then their union is a graph $G=G_{1} \cup G_{2}=(V, E)$ such that $V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$

Graph representation

$$
G=(V, E) ; V=\left\{v_{1}, \ldots, v_{n}\right\}, E=\left\{e_{1}, \ldots, e_{m}\right\}
$$

- Incidence matrix ($n \times m$ matrix)
$M=\left[m_{i j}\right] ; \quad m_{i j}=\left\{\begin{array}{cc}1 & \text { if } e_{j} \text { is adjacent with } v_{i} \\ 0 & \text { otherwise }\end{array}\right.$

$$
\left[\begin{array}{cccc}
& e_{1} & e_{2} & e_{3} \\
a & 1 & 1 & 0 \\
b & 1 & 0 & 1 \\
c & 0 & 1 & 1
\end{array}\right]
$$

- Adjacency matrix ($n \times n$ matrix)
$A=\left[a_{i j}\right] ; a_{i j}=\left\{\begin{array}{lc}1, & \text { if }\left\{v_{i}, v_{j}\right\} \in E \\ 0, & \text { otherwise }\end{array}\right.$

$$
\left[\begin{array}{llll}
& a & b & c \\
a & 0 & 1 & 1 \\
b & 1 & 0 & 1 \\
c & 1 & 1 & 0
\end{array}\right]
$$

Graph isomorphism

- Two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a bijective function $f: V_{1} \rightarrow V_{2}$ such that
$\{u, v\} \in E_{1}$ if and only if $\{f(u), f(v)\} \in E_{2}$,
$\forall u, v \in V_{1}$.
- The function f is called isomorphism.

$$
f(a)=x ; f(b)=u ; f(c)=z ; f(d)=y
$$

Connectivity

- Path: a sequence of edges of the form
$\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{i}, v_{j}\right\},\left\{v_{j}, v_{k}\right\}$
- Length of a path: number of edges

- A cycle: a path with first vertex identical to the last vertex
- A simple path: no edge is traversed more than once
- A graph is connected if there is a path between any pair of its vertices

Cuts

In an undirected graph,

- an articulation point (cut vertex) is vertex whose removal would increase the number of connected components
- a cut edge is an edge whose
 removal would increase the number of connected components

Connectivity of directed graphs

A directed graph is

- strongly connected if for any two vertices $u, v \in V$ there is a path from u to v and from v to u

- weakly connected if, by disregarding the orientation of the edges the resulting (undirected) graph is connected

Number of paths between 2 vertices

- Theorem: Let G be a graph with adjacency matrix A (for a fixed permutation of vertices v_{1}, \ldots, v_{n}). Then, the number of different paths of length $r>0$ between two vertices v_{i} and v_{j} is $\left[A^{r}\right]_{i j}$ (the (i, j)-th element of the matrix A^{r}).

Eulerian graphs

- An Eulerian path/cycle is a path/cycle that contains all the edges exactly once.
- A graph is called traversable if it contains an Eulerian path.
- A graph is called Eulerian if it contains an Eulerian cycle.
- Theorem 1: A connected graph G is Eulerian if and only if it has no vertices of odd degree.
- Theorem 2: A connected graph contains an Eulerian path from vertex u to vertex $v \neq u$ if and only if it is connected and u, v are the only two vertices of odd degree.

Graph connectivity test

Output: List M of marked vertices in the component
Input : Graph G (e.g., adjacency list)
Input : Starting vertex s
$L:=\{s\} ; M:=\{s\} ; \%$ Initialize exploration and marking lists
\% Repeat while there are still nodes to explore
while $L \neq \emptyset$ do
choose $u \in L ;$ \% Pick arbitrary vertex to explore
if $\exists(u, v) \in E$ such that $v \notin M$ then
choose (u, v) with v of smallest index;
$L:=L \cup\{v\} ; M:=M \cup\{v\} ; \%$ Mark and augment
else
$L:=L \backslash\{u\} ; \%$ Prune
end
end

Graph connectivity test - example

L	Mark
$\{2\}$	2
$\{2,1\}$	1
$\{2,1,5\}$	5
$\{2,1,5,6\}$	6
$\{1,5,6\}$	
$\{1,5,6,4\}$	4
$\{5,6,4\}$	
$\{5,4\}$	
$\{5,4,3\}$	3
$\{5,3\}$	
$\{5,3,7\}$	7
$\{5,3\}$	
$\{3\}$	
$\{3,8\}$	8
$\{3\}$	
$\}$	

S6

Questions?

