E2011: Theoretical fundamentals of computer science: Basic notions of graph theory

> Vlad Popovici, Ph.D. Fac. of Science - RECETOX

Applications

- Molecular models
- Computer networks
- Planning and scheduling
- Solve shortest path problems between cities
- Electrical circuits
- ...and many, many, others...

Some more examples

- Navigation/GPS: find the shortest path (using algorithm's like Dijkstra)
- Games: e.g. chess choices can be arrange in a treestructure and best movement (within a given horizon) can be selected
- Computation distribution across machines of a cluster
- Neural networks

Euler and the 7 bridges of Königsberg

(b) Euler's graphical representation

(a) Königsberg in 1736

Definitions - graphs

- A graph G = (V, E) is an ordered pairs of a set of vertices V and a set of edges E.
- If needed, the notation could be V(G) to specify the set of vertices of graph G, and E(G) for the set of edges of the same graph.

 $V = \{1, 2, A, z, \theta\}$ $E = \{\{1, 2\}, \{1, A\}, \{A, z\}, \{\theta, z\}\}$

Definitions - edge types

- Directed edge: an ordered set of vertices, denoted as a tuple (u, v)
- Undirected edge: an unordered set of vertices, represented as a set {u, v}

Definitions - edge type

- Loop: an edge { *u*, *v* }(or
 (*u*, *v*)) with *u* = *v*
- Multiple edges: two or more edges connecting the same two vertices

Definitions - graph type

- Undirected (simple) graph: a graph G(V, E), $V \neq \emptyset$, and E a set of undirected edges
- **Directed graph:** the set of edges contains oriented edges
- **Multigraph:** multiple edges are allowed
- **Pseudograph**: a multigraph with loops
- and combinations...

Terminology - undirected graphs

For an undirected graph G(V, E):

- *u* and *v* are called adjacent if
 e = {*u*, *v*} ∈ *E*; *e* is called
 incident with *u* and *v*; *u* and *v* are
 called endpoints of *e*
- the degree of a vertex v (deg(v)) is the number of edges incident on v
- pendant vertex: deg(v) = 1
- isolated vertex: deg(v) = 0

 $\deg(u) = 2, \forall u \in \{1,3,4\}$

Terminology - directed graphs

For a directed graph G(V, E):

- for e = (u, v) ∈ E; u is adjacent to v; v is adjacent from u; u is initial vertex and v is terminal vertex
- the in-degree of a vertex v

 (deg⁻(v)) is the number of edges
 incident with v terminal vertex
- the out-degree of a vertex v

 (deg⁺(v)) is the number of edges
 incident with v initial vertex

 $deg^+(4) = 0$ $deg^-(4) = 2$ $deg^+(1) = 1$ $deg^-(1) = 1$

Some basic results

- Theorem (Euler): in an <u>undirected graph</u>, $\sum_{v \in V} \deg(v) = 2 |E| \text{ (handshaking theorem)}$
- Theorem (Euler): an <u>undirected graph</u> has an even number of vertices with odd degree
- Theorem: in a <u>directed graph</u>, $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$

Special cases

- Complete graph: K_n is a simple graph where any two vertices are connected by an edge
- Cycle: C_n , $n \ge 3$ consists of n vertices such that $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}, \{v_n, v_1\} \in E$

 $C_3 = K_3$ $C_4 = \{1, 2, 3, 4\}$

Special cases - Bipartite graph

• A simple graph *G* for which the vertices *V* set can be partitioned $V = V_1 \cup V_2, \quad V_4 \cap V_5 = \emptyset$

 $V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset$, such that all edges have one end in V_1 and the other one in V_2

• Complete bipartite graph $K_{m,n}$ is a bipartite graph $(|V_1| = m, |V_2| = n)$ in which all the vertices in one partition are connected to all the vertices in the second partition

Subgraphs

- Let G = (V, E) be a graph.
- A graph H = (V', E') is a subgraph of G if $V' \subseteq V$ and $E' \subseteq E$

Graph union

- Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple graphs
- Then their union is a graph $G = G_1 \cup G_2 = (V, E)$ such that $V_1 \cup V_2$ and $E = E_1 \cup E_2$

Graph representation

$$G = (V, E); V = \{v_1, \dots, v_n\}, E = \{e_1, \dots, e_m\}$$

• Incidence matrix (
$$n \times m$$
 matrix)
 $M = [m_{ij}]; \quad m_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is adjacent with } v_i \\ 0 & \text{otherwise} \end{cases}$

• Adjacency matrix (
$$n \times n$$
 matrix)
 $A = [a_{ij}]; a_{ij} = \begin{cases} 1, & \text{if } \{v_i, v_j\} \in E \\ 0, & \text{otherwise} \end{cases}$

_	e_1	e_2	e_3
a	1	1	0
b	1	0	1
C	0	1	1

$$\begin{bmatrix} a & b & c \\ a & 0 & 1 & 1 \\ b & 1 & 0 & 1 \\ c & 1 & 1 & 0 \end{bmatrix}$$

Graph isomorphism

- Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a bijective function $f : V_1 \rightarrow V_2$ such that $\{u, v\} \in E_1$ if and only if $\{f(u), f(v)\} \in E_2$, $\forall u, v \in V_1$.
- The function *f* is called isomorphism.

u

Ζ

Connectivity

- Path: a sequence of edges of the form
 {v₁, v₂}, {v₂, v₃}, ..., {v_i, v_j}, {v_j, v_k}
- Length of a path: number of edges
- A cycle: a path with first vertex identical to the last vertex
- A simple path: no edge is traversed more than once
- A graph is connected if there is a path between any pair of its vertices

Example of a path: $\{1,2\}, \{2,5\}, \{5,4\}, \{4,7\}$

Cuts

In an undirected graph,

- an articulation point (cut vertex) is vertex whose removal would increase the number of connected components
- a cut edge is an edge whose removal would increase the number of connected components

Connectivity of directed graphs

A directed graph is

- strongly connected if for any two vertices *u*, *v* ∈ *V* there is a path from *u* to *v* and from *v* to *u*
- weakly connected if, by disregarding the orientation of the edges the resulting (undirected) graph is connected

Number of paths between 2 vertices

Theorem: Let G be a graph with adjacency matrix A (for a fixed permutation of vertices v₁, ..., v_n). Then, the number of different paths of length r > 0 between two vertices v_i and v_j is [A^r]_{ij} (the (i, j)-th element of the matrix A^r).

Eulerian graphs

(b) Euler's graphical representation

- An Eulerian path/cycle is a path/cycle that contains all the edges exactly once.
- A graph is called traversable if it contains an Eulerian path.
- A graph is called Eulerian if it contains an Eulerian cycle.

- Theorem 1: A connected graph *G* is Eulerian if and only if it has no vertices of odd degree.
- Theorem 2: A connected graph contains an Eulerian path from vertex *u* to vertex *v* ≠ *u* if and only if it is connected and *u*, *v* are the only two vertices of odd degree.

Graph connectivity test

Output : List *M* of marked vertices in the component Input : Graph G (e.g., adjacency list) Input : Starting vertex s $L := \{s\}; M := \{s\}; \%$ Initialize exploration and marking lists % Repeat while there are still nodes to explore while $L \neq \emptyset$ do choose $u \in L$; % Pick arbitrary vertex to explore if $\exists (u, v) \in E$ such that $v \notin M$ then choose (u, v) with v of smallest index; $L := L \cup \{v\}; M := M \cup \{v\}; \%$ Mark and augment else $L := L \setminus \{u\}; \%$ Prune end end

Graph connectivity test - example

