E2011: Theoretical fundamentals of computer science
 Introduction to numerical approximation

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

Motivation: approximations and errors video

Scientific computing

Wikipedia:

"Computational science (also scientific computing or scientific computation) is concerned with constructing mathematical models and quantitative analysis techniques and using computers to analyze and solve scientific problems."

Scientific computing

Wikipedia:

"Computational science (also scientific computing or scientific computation) is concerned with constructing mathematical models and quantitative analysis techniques and using computers to analyze and solve scientific problems."

Basically: find numerical solutions to mathematically-formulated problems.
(J. Hadamard) A problem is well posed if its solution

- exists
- is unique
- has a behavior that changes continuously with the initial conditions; otherwise, it is ill posed. Inverse problems are often ill posed. Example: 3D to 2D projection.

General computational approach

- well-posed but ill-conditioned problems: small errors in input lead to large variations in the solution \rightarrow improve conditioning by regularization
- continuous domain \rightarrow discrete domain
- infinite \rightarrow finite
- differential \rightarrow algebraic
- nonlinear \rightarrow (combination of) linear
- accept approximate solutions, but control for the error

Approximations

- Modeling approximations:
- "model" = approximation of the nature
- data - inexact measurements or previous results
- Implementation/computational approximations:
- discretization of the continuous domain; truncation
- rounding
- errors in input data
- errors propagated by the algorithm
- accuracy of the final result

Example: area of the Earth

- model: sphere
- $A=4 \pi r^{2}$
- $r=$?
- $\pi=3.14159 \ldots$
- rounded arithmetic

Errors

- Absolute error: approximate value - true value
- Relative error:

$$
\frac{\text { absolute error }}{\text { true value }}
$$

- \rightarrow approximate value $=(1+$ relative error $) \times($ true value $)$
- if the relative error is $\sim 10^{-d}$, it means that \hat{x} has about d exact digits: there exists $\tau= \pm\left(0.0 \ldots 0 n_{d+1} n_{d+2} \ldots\right)$ such that $\hat{x}=x+\tau$
- true value is usually not known \rightarrow use estimates or bounds on the error
- relative error can be taken relative to the approximate value

Example

Stirling's approximation for factorials:

$$
S_{n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \approx n!, \quad n=1,2, \ldots
$$

where $e=\exp (1)$.
Relative error $\left(S_{n}-n!\right) / n!$:

Errors: data and computational

- compute $f(x)$ for $f: \mathbb{R} \rightarrow \mathbb{R}$
- $x \in \mathbb{R}$ is the true value
- $f(x)$ true/desired result
- \hat{x} approximate input
- \hat{f} approximate result
- total error:

$$
\begin{aligned}
\hat{f}(\hat{x}) & -f(x)=(\hat{f}(\hat{x})-f(\hat{x}))+(f(\hat{x})-f(x)) \\
& =\text { computational error }+ \text { propagated data error }
\end{aligned}
$$

- the algorithm has no effect on propagated error

Computational error

is sum of:

- truncation error $=$ (true result) - (result of the algorithm using exact arithmetic)
i.e. error due to approximating mathematical procedures

Example: considering only the first terms of an infinite Taylor series; stopping before convergence

- rounding error = (result of the algorithm using exact arithmetic) (result of the algorithm using limited precision arithmetic) i.e. error due to representation approximation

Example: $\pi \approx 3.14$ or $\pi \approx 3.141593$

Finite difference approximation

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \approx \frac{f(x+h)-f(x)}{h}, \text { for some small } h>0
$$

- truncation error: $f^{\prime}(x)-\frac{f(x+h)-f(x)}{h} \leq M h / 2$ where $\left|f^{\prime \prime}(t)\right| \leq M$ for t in a small neighborhood of x
- rounding error: $2 \epsilon / h$, for ϵ being the precision
- total error is minimized for $h \approx 2 \sqrt{\epsilon / M}$

Figure: Total computational error as a tradeoff between truncation and rounding error (from Heath - Scientific computing)

Error analysis

For $y=f(x)$, for $f: \mathbb{R} \rightarrow \mathbb{R}$ an approximate \hat{y} result is obtained.

- forward error: $\Delta y=\hat{y}-y$
- backward error: $\Delta x=\hat{x}-x$, for $f(\hat{x})=\hat{y}$

Compute $f(x)=e^{x}$ for $x=1$. Use the first 4 terms from Taylor expansion:

$$
\hat{f}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}
$$

- take "true" value: $f(x)=2.716262$ and compute $\hat{f}(x)=2.666667$, then
- forward error: $|\Delta y|=0.051615$, or a relative f. error of about 2%
- backward error: $\hat{x}=\ln \hat{f}(x)=0.989829 \Rightarrow|\Delta x|=0.019171$, or a relative b. error of 2%
- these are two perspectives on assessing the accuracy

Example

Consider the general Taylor series with limit e:

$$
\sum_{n=0}^{\infty} \frac{1}{n!}=e
$$

How many terms are needed for an approximation of e to three decimal places?

For correct 3 decimals, the tail (the rest of the sum, not computed) must be upper bounded by 0.0005 (why?)

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n!} & =\sum_{n=1}^{k} \frac{1}{n!}+\sum_{n=k+1}^{\infty} \frac{1}{n!} \\
& =\sum_{n=1}^{k} \frac{1}{n!}+\frac{1}{(k+1)!}\left[1+\frac{1}{k+2}+\frac{1}{(k+2)(k+3)}+\ldots\right] \\
& <\sum_{n=1}^{k} \frac{1}{n!}+\frac{1}{(k+1)!}\left[1+\frac{1}{k+1}+\frac{1}{(k+1)^{2}}+\ldots\right] \\
& =\sum_{n=1}^{k} \frac{1}{n!}+\frac{1}{(k+1)!}\left[\frac{1}{1-\frac{1}{k+1}}\right]=\sum_{n=1}^{k} \frac{1}{n!}+\frac{1}{k \cdot k!}
\end{aligned}
$$

k	approx	tail	
1	2.00000000	1.00000000	
2	2.50000000	0.25000000	
3	2.66666667	0.05555556	
4	2.70833333	0.01041667	
5	2.71666667	0.00166667	
6	2.71805556	0.00023148	$<-----$
7	2.71825397	0.00002834	
8	2.71827877	0.00000310	
9	2.71828153	0.00000031	
10	2.71828180	0.00000003	

Backward error analysis

- idea: approximate result is the exact solution of a modified problem
- how far from the original problem is the modified version?
- how much error in the input data would explain all the error in the result?
- an approximate solution is good if it is an exact solution for a nearby problem
- backward analysis is usually easier

Sensitivity and conditioning

- insensitive (well-conditioned) problem: relative changes in input data causes similar relative change in the result
- large changes in solution for small changes in input data indicate a sensitive (ill-conditioned) problem;
- condition number:

$$
\text { cond }=\frac{\text { absolute relative change in solution }}{\text { absolute relative change in input }}=\frac{|\Delta y / y|}{|\Delta x / x|}
$$

- if cond >> 1 the problem is sensitive
- condition number is a scale factor for the error: relative forward err $=$ cond \times relative backward err
- usually, only upper bounds of the cond. number can be estimated, cond $\leq C$, hence
relative forward err $\leq C \times$ relative backward err
- $\hat{x}=x+\Delta x$
- forward error: $f(x+\Delta x)-f(x) \approx f^{\prime}(x) \Delta x$, for small enough Δx
- relative forward error: $\approx \frac{f^{\prime}(x) \Delta x}{f(x)}$
- \Rightarrow cond $\approx\left|\frac{x f^{\prime}(x)}{f(x)}\right|$
- $\hat{x}=x+\Delta x$
- forward error: $f(x+\Delta x)-f(x) \approx f^{\prime}(x) \Delta x$, for small enough Δx
- relative forward error: $\approx \frac{f^{\prime}(x) \Delta x}{f(x)}$
- \Rightarrow cond $\approx\left|\frac{x f^{\prime}(x)}{f(x)}\right|$

Example: tangent function is sensitive in neighborhood of $\pi / 2$

- $\tan (1.57079) \approx 1.58058 \times 10^{5} ; \tan (1.57078) \approx 6.12490 \times 10^{4}$
- for $x=1.57079$, cond $\approx 2.48275 \times 10^{5}$

Stability

- an algorithm is stable if is relatively insensitive to perturbations during computation
- stability of algorithms is analogous to conditioning of problems
- backward analysis: an algorithm is stable if the result produced is the exact solution of a nearby problem
- stable algorithm: the effect of computational error is no worse than the effect of small error in input data

Accuracy

- accuracy: closeness of the result to the true solution of the problem
- depends on the conditioning of the problem AND on the stability of the algorithm
- stable algorithm + well-conditioned problem = accurate results

Floating-point numbers

- like in scientific notation: mantissa \times radix ${ }^{\text {exponent }}$, e.g. 2.35×10^{3}
- formally

$$
x= \pm\left(b_{0}+\frac{b_{1}}{\beta}+\frac{b_{2}}{\beta^{2}}+\cdots+\frac{b_{p-1}}{\beta^{p-1}}\right) \times \beta^{E}
$$

where
β is the radix (or base)
p is the precision
$L \leq E \leq U$ are the limits of the exponent
$0 \leq b_{k} \leq \beta$

- mantissa: $m=b_{0} b_{1} \ldots b_{p-1}$; fraction: $b_{1} b_{2} \ldots b_{p-1}$
- the sign, mantissa and exponent are stored in fixed-sized fields (the radix is implicit for a given system, $\beta=2$ usually)

Normalization:

- $b_{0} \neq 0$ for all $x \neq 0$
- mantissa m satisfies $1 \leq m<\beta$
- ensures unique representation, optimal use of available bits Internal representation (on 64 bits - "double precision", binary representation):

$$
x=\begin{array}{|c|c|c|}
\left.\hline \text { sign | exponent | fraction }=\begin{array}{|l|l|l|}
\hline b_{63} & b_{62} \ldots b_{52} & b_{51} \ldots b_{0} \\
\hline
\end{array} . \begin{array}{ll}
\\
\hline
\end{array}\right)
\end{array}
$$

Properties:

- only a finite number of discrete values can be represented
- total number of floating point numbers representable in normalized format is

$$
2(\beta-1) \beta^{p-1}(U-L+1)+1
$$

- undeflow level (smallest number): UFL $=\beta^{L}$
- overflow level (largest number): OFL $=\beta^{U+1}\left(1-\beta^{-p}\right)$
- not all real numbers can be represented exactly:
- machine numbers
- rounding \rightarrow rounding error

From continuous domain to a discrete domain

REAL NUMBERS

0

Example: let $\beta=2, p=3, L=-1, U=1$, there are 25 distinct numbers that can be represented:

- $U F L=0.5_{10} ; O F L=3.5_{10}$
- note the non-uniform coverage
- $\forall x \in \mathbb{R}, f l(x)$ is the floating point representation; $x-f l(x)$ is the rounding error

Rounding rules

- chop = round toward zero: truncate the base $-\beta$ representation after $p-1$ st digit
- round to nearest: $f(x)$ is the closest machine number to x

Machine precision

- machine precision, $\epsilon_{\text {mach }}$
- with chopping: $\epsilon_{\text {mach }}=\beta^{1-p}$
- with rounding to nearest: $\epsilon_{\text {mach }}=\frac{1}{2} \beta^{1-p}$
- called also unit roundoff: the smallest number ϵ such that $f l(1+\epsilon)>1$
- maximum relative error of representation

$$
\left|\frac{f l(x)-x}{x}\right| \leq \epsilon_{\text {mach }}
$$

- usually $0<U F L<\epsilon_{\text {mach }}<O F L$

Machine precision - example

For $\beta=2, p=3, L=-1, U=1$,

- $\epsilon_{\text {mach }}=(0.01)_{2}=(0.25)_{10}$ with chopping
- $\epsilon_{\text {mach }}=(0.001)_{2}=(0.125)_{10}$ with rounding to nearest

The usual case (IEEE fp systems):

- $\epsilon_{\text {mach }}=2^{-24} \approx 10^{-7}$ in single precision
- $\epsilon_{\text {mach }}=2^{-53} \approx 10^{-16}$ in double precision
- \rightarrow about 7 and 16 decimals of precision, respectively
- (in R: p-value < 2.2e-16)

Gradual underflow

- to improve representation of numbers around 0 - use subnormal (or denormalized) numbers
- when exponent is at minimum, alow leading digits to be 0
- subnormals are less precise
- \rightarrow gradual underflow

Special values

IEEE standard:

- Inf: infinity; the result of $1 / 0$
- NaN: the result of $0 / 0$ or $\operatorname{Inf} / \operatorname{Inf}$
- special representation of the exponent field

Floating-point arithmetic

- addition/subtraction: denormalization might be required: $3.52 \times 10^{3}+1.97 \times 10^{5}=0.0352 \times 10^{5}+1.97 \times 10^{5}=2.0052 \times 10^{5}$ \rightarrow might cause loss of some digits
- multiplication/division: the result may not be representable
- overflow is more serious than underflow: how to approximate large numbers?
- for underflow, the result may be approximated by 0
- in FP arithm. addition and multiplication are commutative but not associative: if ϵ is slightly smaller than $\epsilon_{\text {mach }}$, then $(1+\epsilon)+\epsilon=1$, but $1+(\epsilon+\epsilon)>1$
- ideally, x flop $y=f l(x$ op $y)$; IEEE standard ensures this for within range results

Example: divergent series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

- in FP arithm, the sum of the series is finite;
- depending on the system, this is because:
- after a while, the sum overflows
- $1 / n$ underflows
- for all n such that

$$
\frac{1}{n}<\epsilon_{\operatorname{mach}} \sum_{k=1}^{n-1} \frac{1}{k}
$$

the sum does not change anymore

Cancellation

- subtracting 2 numbers of the same magnitude usually cancels the most significant digits:
$1.92403 \times 10^{2}-1.92275 \times 10^{2}=1.28000 \times 10^{-1} \rightarrow$ only 3 significant digits
- let $\epsilon>0$ be slightly smaller than $\epsilon_{\text {mach }}$, then $(1+\epsilon)-(1-\epsilon)$ yields 0 in FP arithmetic, instead of 2ϵ.

Cancellation - example

For the quadratic equation, $a x^{2}+b x+c=0$, the two solutions are given by

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Problems:

- for very large/small coefficients, the terms b^{2} or $4 a c$ may over-/underflow \rightarrow rescale coeficients by $\max \{a, b, c\}$.
- cancellation between $-b$ and $\sqrt{ }$ can be avoided by computing one root using $x=\frac{2 c}{-b \mp \sqrt{b^{2}-4 a c}}$

Questions?

Supplementals

- here you can convert between real numbers and their representation and see the machine error
- have a look at float toy to see how real numbers are represented see also the Wikipedia links from the same page
- for a principle discussion of the subject, read What every computer scientist should know about floating-point arithmetic by D. Goldberg

