E2011: Theoretical fundamentals of computer science Introduction to numerical approximation

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivation: approximations and errors video

Scientific computing

Wikipedia:

"Computational science (also scientific computing or scientific computation) is concerned with constructing mathematical models and quantitative analysis techniques and using computers to analyze and solve scientific problems."

Scientific computing

Wikipedia:

"Computational science (also scientific computing or scientific computation) is concerned with constructing mathematical models and quantitative analysis techniques and using computers to analyze and solve scientific problems."

Basically: find numerical solutions to mathematically-formulated problems.

(J. Hadamard) A problem is well posed if its solution

- exists
- is unique
- has a behavior that changes continuously with the initial conditions;

otherwise, it is ill posed.

Inverse problems are often ill posed.

Example: 3D to 2D projection.

General computational approach

- well-posed but ill-conditioned problems: small errors in input lead to large variations in the solution → improve conditioning by regularization
- continuous domain \rightarrow discrete domain
- infinite \rightarrow finite
- differential \rightarrow algebraic
- nonlinear \rightarrow (combination of) linear
- accept approximate solutions, but control for the error

Approximations

- Modeling approximations:
 - "model" = approximation of the nature
 - data inexact measurements or previous results
- Implementation/computational approximations:
 - discretization of the continuous domain; truncation
 - rounding
- errors in input data
- errors propagated by the algorithm
- accuracy of the final result

Example: area of the Earth

- model: sphere
- $A = 4\pi r^2$
- *r* =?
- *π* = 3.14159...
- rounded arithmetic

Errors

- Absolute error: approximate value true value
- Relative error:

absolute error true value

- \rightarrow approximate value = (1 + relative error) × (true value)
- if the relative error is ~ 10^{-d} , it means that \hat{x} has about *d* exact digits: there exists $\tau = \pm (0.0...0n_{d+1}n_{d+2}...)$ such that $\hat{x} = x + \tau$
- true value is usually not known → use estimates or bounds on the error
- relative error can be taken relative to the approximate value

Example

Stirling's approximation for factorials:

$$S_n = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \approx n!, \qquad n = 1, 2, \dots$$

where $e = \exp(1)$. Relative error $(S_n - n!)/n!$:

Errors: data and computational

- compute f(x) for $f : \mathbb{R} \to \mathbb{R}$
 - $x \in \mathbb{R}$ is the true value
 - f(x) true/desired result
 - x̂ approximate input
 - *f* approximate result
- total error:

$$\hat{f}(\hat{x}) - f(x) = (\hat{f}(\hat{x}) - f(\hat{x})) + (f(\hat{x}) - f(x))$$

= computational error + propagated data error

• the algorithm has no effect on propagated error

Computational error

is sum of:

 truncation error = (true result) - (result of the algorithm using exact arithmetic)

i.e. error due to approximating mathematical procedures Example: considering only the first terms of an infinite Taylor series; stopping before convergence

• rounding error = (result of the algorithm using exact arithmetic) - (result of the algorithm using limited precision arithmetic) i.e. error due to representation approximation Example: $\pi \approx 3.14$ or $\pi \approx 3.141593$

Finite difference approximation

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx \frac{f(x+h) - f(x)}{h}$$
, for some small $h > 0$

- truncation error: $f'(x) \frac{f(x+h)-f(x)}{h} \le Mh/2$ where $|f''(t)| \le M$ for t in a small neighborhood of x
- rounding error: $2\epsilon/h$, for ϵ being the precision
- total error is minimized for $h \approx 2 \sqrt{\epsilon/M}$

Figure: Total computational error as a tradeoff between truncation and rounding error (from *Heath - Scientific computing*)

Error analysis

For y = f(x), for $f : \mathbb{R} \to \mathbb{R}$ an approximate \hat{y} result is obtained.

- forward error: $\Delta y = \hat{y} y$
- backward error: $\Delta x = \hat{x} x$, for $f(\hat{x}) = \hat{y}$

Compute $f(x) = e^x$ for x = 1. Use the first 4 terms from Taylor expansion:

$$\hat{f}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

- take "true" value: f(x) = 2.716262 and compute $\hat{f}(x) = 2.6666667$, then
- forward error: $|\Delta y| = 0.051615$, or a relative f. error of about 2%
- backward error: $\hat{x} = \ln \hat{f}(x) = 0.989829 \Rightarrow |\Delta x| = 0.019171$, or a relative b. error of 2%
- these are two perspectives on assessing the accuracy

Example

Consider the general Taylor series with limit e:

$$\sum_{n=0}^{\infty}\frac{1}{n!}=e$$

How many terms are needed for an approximation of *e* to three decimal places?

For correct 3 decimals, the *tail* (the rest of the sum, not computed) must be upper bounded by 0.0005 (why?)

$$\sum_{n=1}^{\infty} \frac{1}{n!} = \sum_{n=1}^{k} \frac{1}{n!} + \sum_{n=k+1}^{\infty} \frac{1}{n!}$$
$$= \sum_{n=1}^{k} \frac{1}{n!} + \frac{1}{(k+1)!} \left[1 + \frac{1}{k+2} + \frac{1}{(k+2)(k+3)} + \dots \right]$$
$$< \sum_{n=1}^{k} \frac{1}{n!} + \frac{1}{(k+1)!} \left[1 + \frac{1}{k+1} + \frac{1}{(k+1)^2} + \dots \right]$$
$$= \sum_{n=1}^{k} \frac{1}{n!} + \frac{1}{(k+1)!} \left[\frac{1}{1 - \frac{1}{k+1}} \right] = \sum_{n=1}^{k} \frac{1}{n!} + \frac{1}{k \cdot k!}$$

Vlad Popovici, Ph.D. (Fac. of Science - RECET(E2011: Theoretical fundamentals of computer so

k	approx	tail	
1	2.00000000	1.00000000	
2	2.50000000	0.25000000	
3	2.66666667	0.05555556	
4	2.70833333	0.01041667	
5	2.71666667	0.00166667	
6	2.71805556	0.00023148	<
7	2.71825397	0.00002834	
8	2.71827877	0.00000310	
9	2.71828153	0.0000031	
10	2.71828180	0.0000003	

Backward error analysis

- idea: approximate result is the exact solution of a modified problem
- how far from the original problem is the modified version?
- how much error in the input data would explain all the error in the result?
- an approximate solution is good if it is an exact solution for a nearby problem
- backward analysis is usually easier

Sensitivity and conditioning

- insensitive (well-conditioned) problem: relative changes in input data causes similar relative change in the result
- large changes in solution for small changes in input data indicate a sensitive (ill-conditioned) problem;
- ondition number:

 $cond = \frac{absolute relative change in solution}{absolute relative change in input} = \frac{|\Delta y/y|}{|\Delta x/x|}$

• if cond >> 1 the problem is sensitive

- condition number is a scale factor for the error: relative forward err = cond × relative backward err
- usually, only upper bounds of the cond. number can be estimated, cond ≤ C, hence

relative forward err $\leq C \times$ relative backward err

•
$$\hat{x} = x + \Delta x$$

- forward error: $f(x + \Delta x) f(x) \approx f'(x)\Delta x$, for small enough Δx
- relative forward error: $\approx \frac{f'(x)\Delta x}{f(x)}$
- \Rightarrow cond $\approx \left| \frac{xf'(x)}{f(x)} \right|$

- $\hat{x} = x + \Delta x$
- forward error: $f(x + \Delta x) f(x) \approx f'(x)\Delta x$, for small enough Δx
- relative forward error: $\approx \frac{f'(x)\Delta x}{f(x)}$
- \Rightarrow cond $\approx \left| \frac{xf'(x)}{f(x)} \right|$

Example: tangent function is sensitive in neighborhood of $\pi/2$

- $tan(1.57079) \approx 1.58058 \times 10^5$; $tan(1.57078) \approx 6.12490 \times 10^4$
- for x = 1.57079, cond $\approx 2.48275 \times 10^5$

Stability

- an algorithm is stable if is relatively insensitive to perturbations during computation
- stability of algorithms is analogous to conditioning of problems
- backward analysis: an algorithm is stable if the result produced is the exact solution of a nearby problem
- stable algorithm: the effect of computational error is no worse than the effect of small error in input data

Accuracy

- accuracy: closeness of the result to the true solution of the problem
- depends on the conditioning of the problem AND on the stability of the algorithm
- stable algorithm + well-conditioned problem = accurate results

Floating-point numbers

- like in scientific notation: mantissa \times radix^{exponent}, e.g. 2.35×10^3
- formally

$$x = \pm \left(b_0 + \frac{b_1}{\beta} + \frac{b_2}{\beta^2} + \dots + \frac{b_{p-1}}{\beta^{p-1}} \right) \times \beta^{E}$$

where

 β is the radix (or base)

p is the precision

 $L \leq E \leq U$ are the limits of the exponent

$$0 \leq b_k \leq \beta$$

• mantissa: $m = b_0 b_1 \dots b_{p-1}$; fraction: $b_1 b_2 \dots b_{p-1}$

 the sign, mantissa and exponent are stored in fixed-sized fields (the radix is implicit for a given system, β = 2 usually) Normalization:

- $b_0 \neq 0$ for all $x \neq 0$
- mantissa *m* satisfies $1 \le m < \beta$

• ensures unique representation, optimal use of available bits Internal representation (on 64 bits - "double precision", binary representation):

$$x =$$
sign | exponent | fraction $= b_{63} | b_{62} \dots b_{52} | b_{51} \dots b_0$

Properties:

- only a finite number of discrete values can be represented
- total number of floating point numbers representable in normalized format is

$$2(\beta - 1)\beta^{p-1}(U - L + 1) + 1$$

- undeflow level (smallest number): $UFL = \beta^{L}$
- overflow level (largest number): $OFL = \beta^{U+1}(1 \beta^{-p})$
- not all real numbers can be represented exactly:
 - machine numbers
 - rounding → rounding error

From continuous domain to a discrete domain

Example: let $\beta = 2, p = 3, L = -1, U = 1$, there are 25 distinct numbers that can be represented:

- $UFL = 0.5_{10}$; $OFL = 3.5_{10}$
- note the non-uniform coverage
- ∀x ∈ ℝ, fl(x) is the floating point representation; x − fl(x) is the rounding error

Rounding rules

- chop = round toward zero: truncate the base-β representation after p - 1st digit
- round to nearest: fl(x) is the closest machine number to x

Machine precision

- machine precision, ϵ_{mach}
 - with chopping: $\epsilon_{mach} = \beta^{1-p}$
 - with rounding to nearest: $\epsilon_{mach} = \frac{1}{2}\beta^{1-p}$
- called also *unit roundoff*: the smallest number ϵ such that $fl(1 + \epsilon) > 1$
- maximum relative error of representation

$$\left|\frac{fl(x)-x}{x}\right| \le \epsilon_{\rm mach}$$

• usually 0 < UFL < ϵ_{mach} < OFL

Machine precision - example

For $\beta = 2, p = 3, L = -1, U = 1$,

- $\epsilon_{mach} = (0.01)_2 = (0.25)_{10}$ with chopping
- $\epsilon_{mach} = (0.001)_2 = (0.125)_{10}$ with rounding to nearest

The usual case (IEEE fp systems):

- $\epsilon_{mach} = 2^{-24} \approx 10^{-7}$ in single precision
- $\epsilon_{mach} = 2^{-53} \approx 10^{-16}$ in double precision
- $\bullet \rightarrow$ about 7 and 16 decimals of precision, respectively
- (in R: p-value < 2.2e 16)

Gradual underflow

- to improve representation of numbers around 0 use subnormal (or denormalized) numbers
- when exponent is at minimum, alow leading digits to be 0
- subnormals are less precise
- \rightarrow gradual underflow

Special values

IEEE standard:

- Inf: infinity; the result of 1/0
- NaN: the result of 0/0 or Inf/Inf
- special representation of the exponent field

Floating-point arithmetic

- addition/subtraction: denormalization might be required: $3.52 \times 10^3 + 1.97 \times 10^5 = 0.0352 \times 10^5 + 1.97 \times 10^5 = 2.0052 \times 10^5$ \rightarrow might cause loss of some digits
- *multiplication/division*: the result may not be representable
- overflow is more serious than underflow: how to approximate large numbers?
- for underflow, the result may be approximated by 0
- in FP arithm. addition and multiplication are commutative but *not* associative: if *ϵ* is slightly smaller than *ϵ*_{mach}, then (1 + *ϵ*) + *ϵ* = 1, but 1 + (*ϵ* + *ϵ*) > 1
- ideally, x flop y = fl(x op y); IEEE standard ensures this for within range results

Example: divergent series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- in FP arithm, the sum of the series is finite;
- depending on the system, this is because:
 - after a while, the sum overflows
 - 1/n underflows
 - for all n such that

$$\frac{1}{n} < \epsilon_{\text{mach}} \sum_{k=1}^{n-1} \frac{1}{k}$$

the sum does not change anymore

Cancellation

- subtracting 2 numbers of the same magnitude usually cancels the most significant digits:
 1.92403 × 10² − 1.92275 × 10² = 1.28000 × 10⁻¹ → only 3 significant digits
- let ε > 0 be slightly smaller than ε_{mach}, then (1 + ε) − (1 − ε) yields 0 in FP arithmetic, instead of 2ε.

Cancellation - example

For the quadratic equation, $ax^2 + bx + c = 0$, the two solutions are given by

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Problems:

- for very large/small coefficients, the terms b² or 4ac may over-/underflow → rescale coeficients by max{a, b, c}.
- cancellation between -b and $\sqrt{\cdot}$ can be avoided by computing one root using $x = \frac{2c}{-b \mp \sqrt{b^2 4ac}}$

Questions?

Vlad Popovici, Ph.D. (Fac. of Science - RECET(E2011: Theoretical fundamentals of computer so

.⊒ . ►

Supplementals

- here you can convert between real numbers and their representation and see the machine error
- have a look at float toy to see how real numbers are represented see also the Wikipedia links from the same page
- for a principle discussion of the subject, read What every computer scientist should know about floating-point arithmetic by D. Goldberg