1. The table below describes a hypothetical case-control study that examined the relationship between prostate cancer risk and beer consumption. 5 prostate cancer cases university clinics completed a questionnaire shortly after diagnosis. Controls were recruited from patients in the surgical outpatient clinics of the same hospitals. Cases and controls completed a questionnaire about the frequency and amount of beer consumed in the last year.

	Cases	Controls	
Non-drinkers	51	88	
Rarely drinking beers	53	101	
Drinking few beers often	86	125	
Drinking beer a lot and often	96	74	
Total	286	388	

a) Calculate the frequency of different levels of beer consumption for cases and controls.

What is the interpretation?

	Cases	Controls	
Non-drinkers	17.8%	22.7%	
Rarely drinking beers	18.5%	26.0%	
Drinking few beers often	30.1%	32.2%	
Drinking beer a lot and often	33.6%	19.1%	

There is a higher proportion of those who drink beer a lot and often among cases compared to controls; there is a lower proportion of non-drinkers among cases compared to control. There is a higher proportion of individuals rarely drinking beers among controls compared to cases.

 b) Calculate the odds ratio for each category of beer consumption compared to non-drinkers. Interpret.

	Cases	Controls	Odds	OR
Non-drinkers	51	88	0.58	1
Rarely drinking beers	53	101	0.52	0.91
Drinking few beers often	86	125	0.69	1.19
Drinking beer a lot and often	96	74	1.30	2.24

The odds of having the diagnosis of prostate cancer are lower for those who rarely drink beers compared to non-drinkers (OR = 0.91). However, there are higher odds for those that drink few beers often (OR = 1.19) or who drink beer a lot and often (OR = 2.24) compared to non-drinkers.

c) What other information would we need?

Age, sex of participants, how long they have been drinking, other lifestyle factors: smoking, physical exercise, environmental (e.g., occupational) exposures, family history of cancer...

d) Can the way the cases and controls were recruited affect the results? How and why? *Yes, because the sampling might not be random for cases (e.g., response bias); similarly, similarly, the controls were patients and they might have other pre-existing conditions, which might affect the rates. The reporting of beer consumption might systematically differ between controls vs cases. There might be a recall bias.*

e) What other ways of recruiting probands for a similar study we can consider and what are the advantages and disadvantages?

For example:

Community sampling:

- *Advantage useful for getting better estimates of the studied population*
- Disadvantage more expensive and time-consuming

Population-based sampling

- Advantage provides a more representative sample of the general population.
- Disadvantages even more expensive than CS and logistically challenging, harder to get enough cases