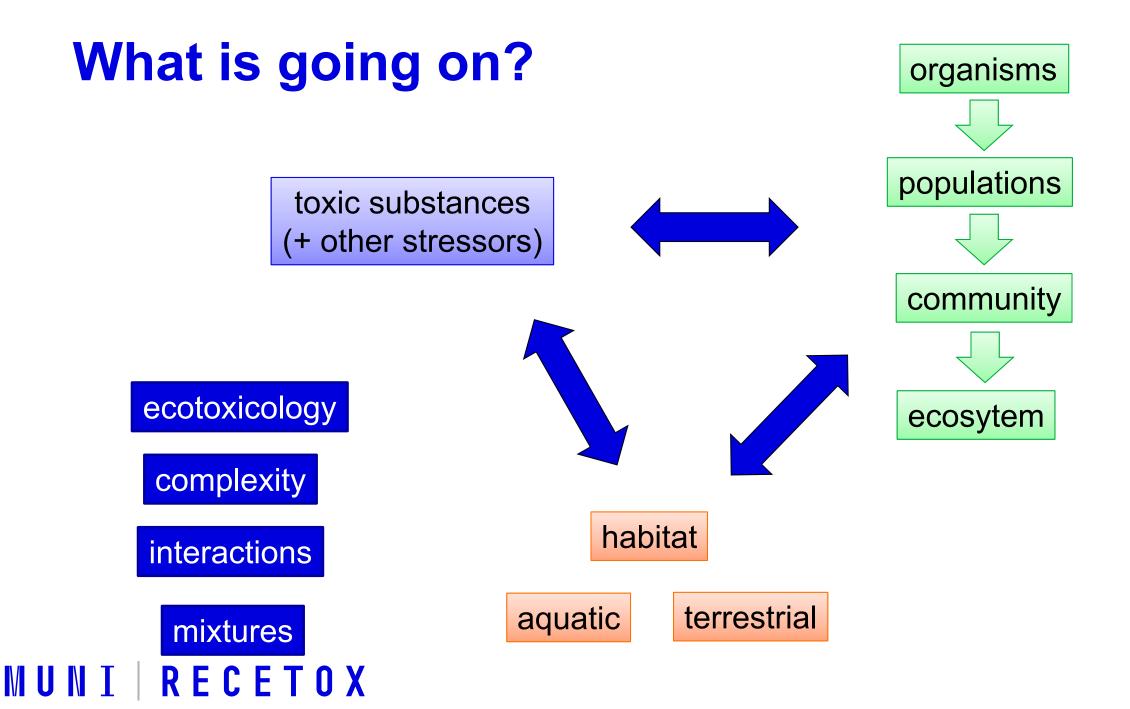
MUNI RECETOX

E5080 / E0323

Ecotoxicology

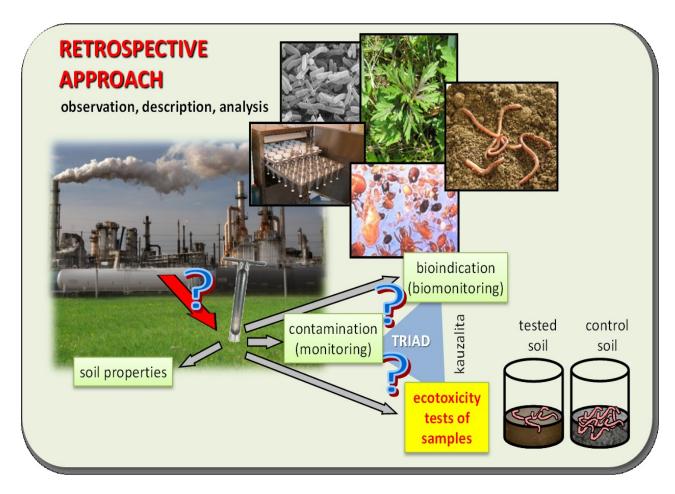

Ecotoxicology in Field Studies

Jakub Hofman

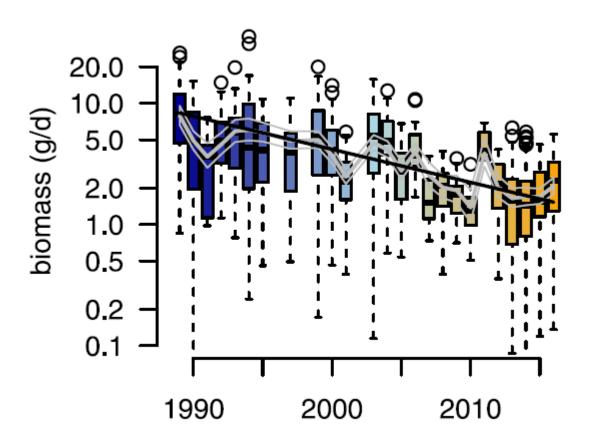
1

MUNI RECETOX

Introduction


- real problems are in real ecosystems !
- Iot of problems already happened !

Challenges


- how to address ecotoxicity in real situation?
- how to find causality between degradation and ekosystem state?

How?

- measurements (observations) directly in the field
- sampling + analyses
- bioindication, biomonitoring
- causality, correlations, weight of evidence, TRIAD approach

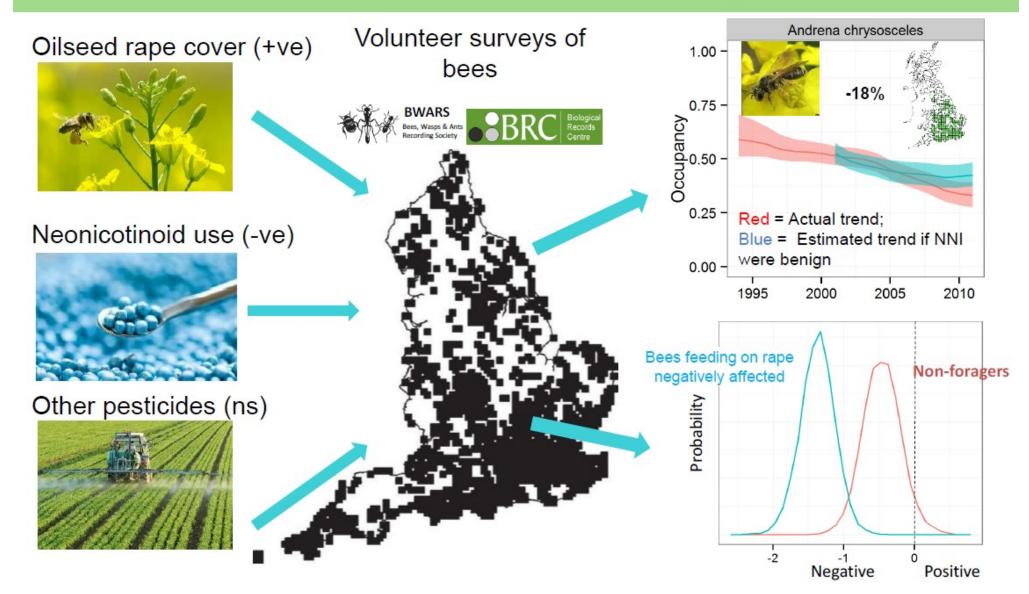
Bioidication – example of alarming results

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185809UNIRECETOX

RESEARCH ARTICLE

More than 75 percent decline over 27 years in total flying insect biomass in protected areas

Caspar A. Hallmann¹*, Martin Sorg², Eelke Jongejans¹, Henk Siepel¹, Nick Hofland¹, Heinz Schwan², Werner Stenmans², Andreas Müller², Hubert Sumser², Thomas Hörren², Dave Goulson³, Hans de Kroon¹


1 Radboud University, Institute for Water and Wetland Research, Animal Ecology and Physiology & Experimental Plant Ecology, PO Box 9100, 6500 GL Nijmegen, The Netherlands, 2 Entomological Society Krefeld e.V., Entomological Collections Krefeld, Marktstrasse 159, 47798 Krefeld, Germany, 3 University of Sussex, School of Life Sciences, Falmer, Brighton BN1 9QG, United Kingdom

* c.hallmann@science.ru.nl

Abstract

Global declines in insects have sparked wide interest among scientists, politicians, and the general public. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and to jeopardize ecosystem services. Our understanding of the extent and underlying causes of this decline is based on the abundance of single species or taxonomic groups only, rather than changes in insect biomass which is more relevant for ecological functioning. Here, we used a standardized protocol to measure total insect biomass using Malaise traps, deployed over 27 years in 63 nature protection areas in Germany (96 unique location-year combinations) to infer on the status and trend of local entomofauna. Our analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study. We show that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline. This yet unrecognized loss of insect biomass must be taken into account in evaluating declines in abundance of species depending on insects as a food source, and ecosystem functioning in the European landscape.

Neonicotinoid use & pollinator decline: a 17 year correlation

B.A. Woodcock *et al.* (2016) Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nature Communications 7, 12459. doi:10.1038/ncomms12459

MUNI RECETOX

How to?

General scheme

- 1. site characterization, survey directly in the field
- 2. assessment parameters selection for the given ecosystem in relation to the stress impact
 - abiotic components
 - biotic components
 - structure parameters (eg species composition diversity, abundances ...)
 - functional parameters (eg flows of energy / materials, processes, bilances, resilience/resistence ...)
- **3. sampling plan** (sampling frequency, numbers ...)
 - abiotic components (water, sediments, soil air)
 - biotic components (producers consumers destruents)
- 4. sampling campaign + analyses
- 5. assessment and interpretation, comparison of exposure vs control (!), conclusions

1) Site characterization

- depending on:
 - terrestrial ecosystem: terrain influences slopes, vegetation ...
 - aquatic ecosystem: flowing static (lentic / lotic), depth, size, flow speed, fragmentation (macrophyta, benthos ...)
- other properties needed to be recorded:
 - main weather conditions, wind directions, light intensity ...
 - specific parameters (any antrhopogenic activities nearby?, sources of pollution? ...)
 - map records ...
 - what else ?
 - 0 ...

2) Parameters selection

abiotic components

- where (water, sediment, soil, air) the stressor does occur / act ?
- where the residues are expected ?

biotic components

- which organisms will be evaluated to see the impacts of stressors:
 - relation to stressor's influence (eg planktonic substances dissolved in the water column, ie hydrophilic versus sediments - hydrophobic)
 - evaluated groups (eg producers algae, consumers zooplancton, fish; destruents planktonic bacteria)
 - key species, bioindicators ...
 - parameters evaluated
 - structural (taxonomic parameters, biomass, abundance ...)
 - functional (production / respiration, food chains ...)

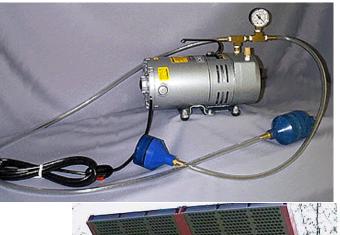
A: sampling and analyses of abiotic components

- plan and design of sampling plots / sites
 - areal, vertical depth, air sampling
- merging and creating mixed samples ("average" sample from the site)
- assessment of the fundamental chemical and physical parameters (organic carbon, pH, particle sizes)
- characterization and determination of the contamination
 - <u>analytical chemistry and environmental chemistry</u>
- ecotoxicological bioassays of the real matrices special use of bioassays

A: sampling and analyses of abiotic components

Water

Sediment



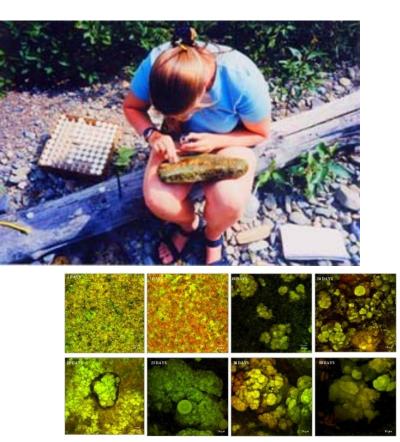
A: sampling and analyses of abiotic components

MUNI

Air

B: sampling and analyses of biota

- plan and distribution of the sampling plots / sites
- sampling variable according to organisms...
- characterization of defined biotic parameters
 - techniques of botanical, zoological, microbiological and ecological disciplines
- characterization and determination of contamination of biota
 - <u>techniques</u> of analytical chemistry and environmental chemistry


3B) Sampling - biota

water

Planctonic nets

Periphyton – biofilm

3B) Sampling - biota

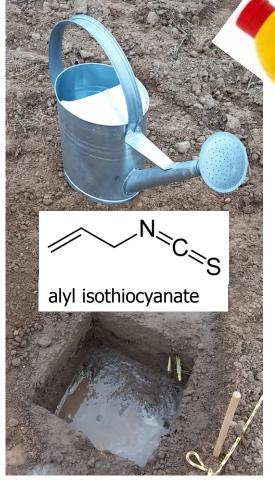
water

Benthic invertebrates

Fish

- different according to type and especially the size of organisms
- manual sorting, picking
- pitfall traps
- extracting methods: Tulgren's extraction, O'Connor's extraction ...

ISO 23611-1:2006	Soil quality Sampling of soil invertebrates – Part 1: Hand-sorting and formalin extraction of earthworms
ISO 23611-2:2006	Soil quality Sampling of soil invertebrates – Part 2: Sampling and extraction of micro-arthropods (Collembola and Acarina)
ISO 23611-3:2007	Soil quality Sampling of soil invertebrates – Part 3: Sampling and soil extraction of enchytraeids
ISO 23611-4:2007	Soil quality Sampling of soil invertebrates – Part 4: Sampling, extraction and identification of soil-inhabiting nematodes
ISO/DIS 23611-5	Soil quality Sampling of soil invertebrates – Part 5: Sampling and extraction of soil macro-invertebrates
ISO/DIS 23611-6	Soil quality Sampling of soil invertebrates – Part 6: Guidance for the <i>design of sampling programmes</i> with soil invertebrates


earthworms

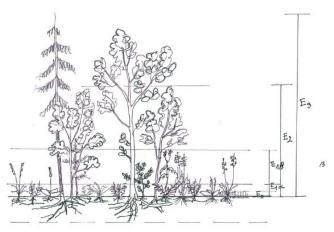
earthworms

earthworms

3B) Sampling – biota – insects

- capture into pitfall traps those living on the surface of the soil
- capture using exhaustor
- by sweeping with an entomological net from vegetation or from air
- collection or falling from vegetation
- Malaise trap
- impact traps (without or with attractants, pheromones)
- ... and many other methods

3B) Sampling – biota – insects



3B) Sampling – biota – terrestrial plants

Phytocoenological snapshot

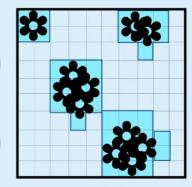
- defining area, square or rectangle
- units or hundreds of m²
- plants are divided according to height into several vegetation floors:
 - bryophytes and lichens
 - herbs, seedlings of trees
 - shrubs and trees with possible epiphytes
- estimation of the coverage of individual floors
- on each floor, all species, including an estimate of the area they cover (in percent or special scale – 7-point Braun-Blanquet or 11-point Domino)
- other information is recorded, of course the exact location and date, but also the slope and its orientation
- soil samples can also be taken for later analyzes (eg pH and other chemical analyzes)

3B) Sampling – biota – terrestrial plants

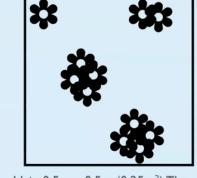
Quadrat method

How many weeds are in this field?

Total area of field: (200m × 50m) = **10,000m**²


Area sampled: (10 quadrats x 0.25m²) = **2.5m²**

Number of weeds in sampled area: **56**


Total weeds in field: (10,000/2.5) x 56 = 224,000

METHODS TO ESTIMATE THE ABUNDANCE OF A SPECIES

- 1. Local frequency (% of squares in the quadrat with the species present)
- 2. Density (The number of one species in a given area)
- 3. Percentage cover (proportion of the ground occupied by the species)

35 squares contain the species = 35% local frequency

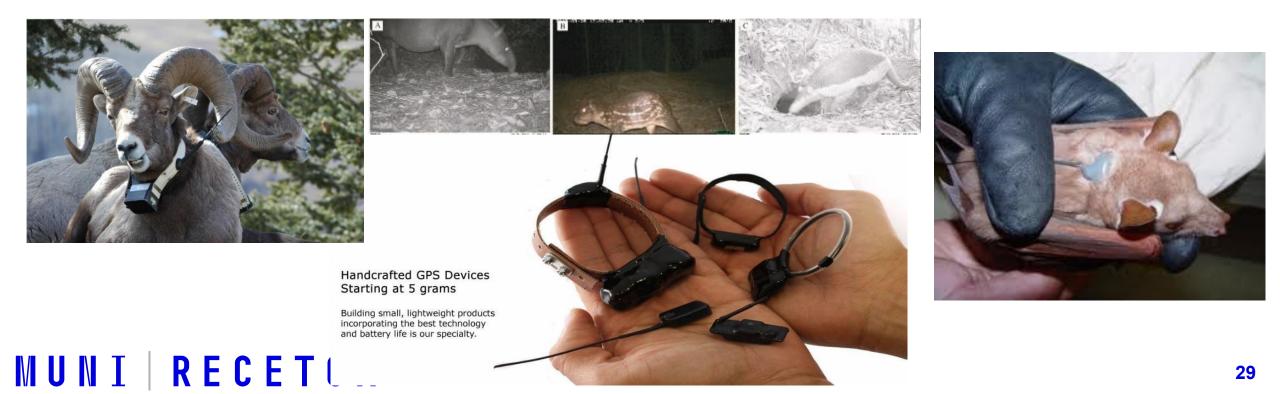
11 in 0.5m x 0.5m (0.25m²) The whole field is 280m²
(280/0.25) x 11
=12, 320 of species in entire field

18 full squares covered= 18% percentage cover

MUNI | RECETOX

3B) Sampling – biota – mammals

Direct methods

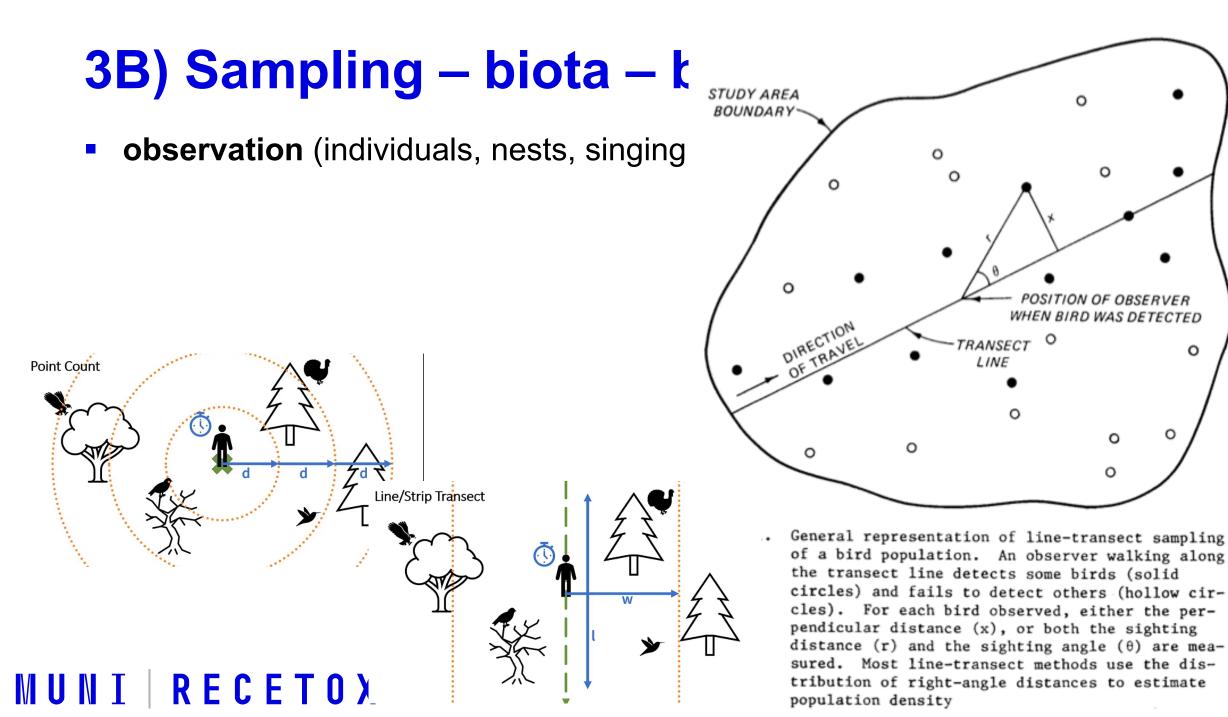

- **sampling** capture the representative part of the population
- dead-traps (animal is killed) clap-traps, wire eyes, "pitfall traps" with water and other traps, shooting
- alive traps corridors, fall-doors, baits; Sherman's or Longworth trap; tagging (rings, ears, color ...), release and re -capture (CMR - Catch, Mark, Release)

3B) Sampling – biota – mammals

Direct methods

- **observation** big animals or cameras or phototraps
- labelling bands, collars, telemetry (GPS)

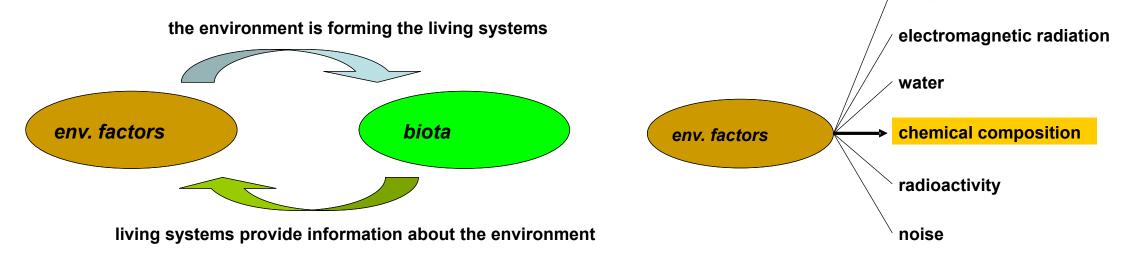



3B) Sampling – biota – birds

catching – nets, rings, blood sampling, feathers sampling etc.

4) Assessment and interpretation

comparision of the exposed and control ecosystem


- fundamental parameters of the compared ecosystems should be SIMILAR / COMPARABLE (eg pH values, water hardness, similar geochemical parameters – subsurface ...)
- chemical contamination of the environmental compartments versus biota in the compared ecosystems
 - are there differences in the concentrations of the toxic compounds?
 - is there any relationship between concentrations in the environment and in biota?
- comparing biotic parameters in both compared ecosystems
 - are there differences in the taxonomic composition of the communities?
 - are there differences in the coverage abundance biomass?
 - are the food relationships different?
 - what about rezistence and resilience (how long the stress has acted and how long it does not act any more?)
- correlation is NOT equal to causality !
 UNI RECETOX

MUNI RECETOX

Bioindication, biomonitoring

Bioindication

method, when the Environmental status is assessed on the basis of the properties of biological systems

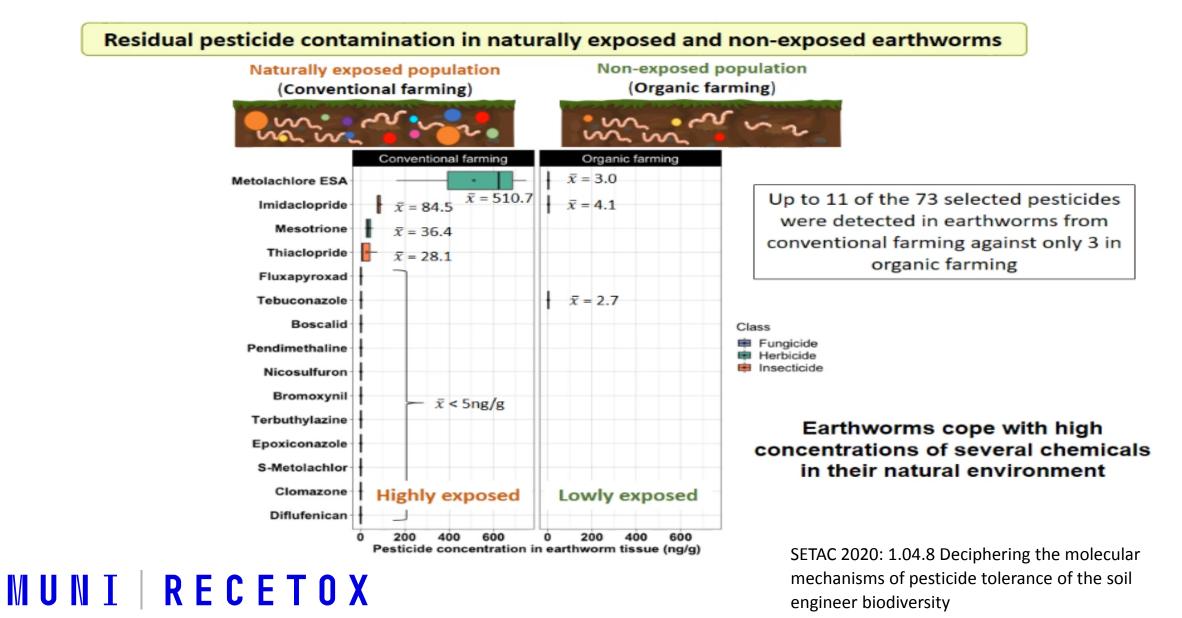
in broader context, we mean all methods when we observe reactions of organisms present in the environment (from individuals to communities) on stress

Bioindication versus biomonitoring

- bio + monitoring
- bioindication is an approach
- biomonitoring is the use of this approach in the field studies, especially at number of sites and repeatedly in time

Bioindication

- monitoring of chemicals in the collected biota samples
 - in anything, preferentially so -called bioacumulators or bioindicator species / samples (eg needles)
- tracking biota and its response to the environmental factors
 - biochemical markers


RECET

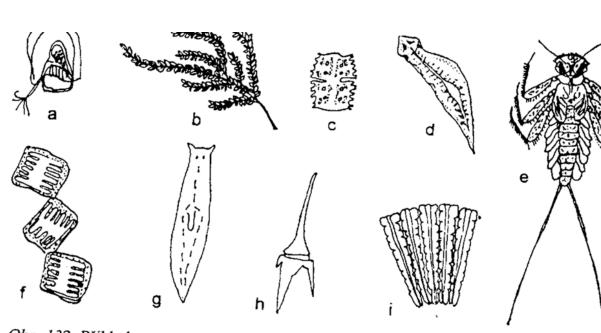
- of effects (stress proteins HSP Heat Shock Proteins, chromosome aberations ...)
- of exposure (Methalothioneins, EROD Ethoxyresorufin-O-Deethylase ...)
- o indicator species presence/absence indicates a certain feature of the ekosystém
 - sensitive species (eg stoneflies, mountain Tubellaria, lichens)
 - oportunist species (eg chironomids, leeches ...)
- the condition and function of organisms

ΠΧ

- population numbers of organisms, distribution, age composition ...
- community species composition and representation, biodiversity
- state of ecosystem or landscape structure, dynamics, function

Accumulation bioindicators - example

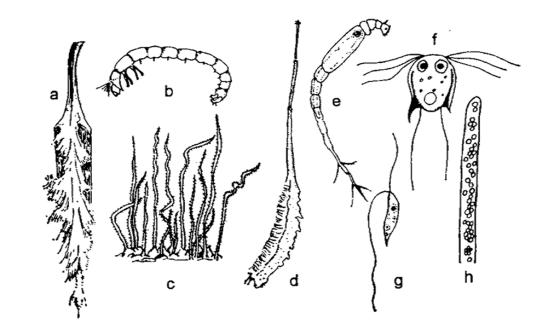
Indicator species – example: Saprobity index


- sapros = rot, blight, decomposition ...
- organic "non-toxic" substances (fecal pollution, "nutrients" for microbes)
- many organic chemicals → nutrients for bacteria → degradation of organic substances and consumption of oxygen → impacts on aquatic biota

Increased saprobity

- one of the major threats for water quality (and indicator of water pollution / purity) in Europe
- not the direct toxicity, rather oxygen depletion (!)
- assessment = categorization
- polysaprobity / mesosaprobity (alfa-, beta-) / oligosaprobity
- (new: catarobity / limnosaprobity / eusaprobity / transsaprobity)

Indicator species – example: Saprobity index


Indicator species for saprobity - examples

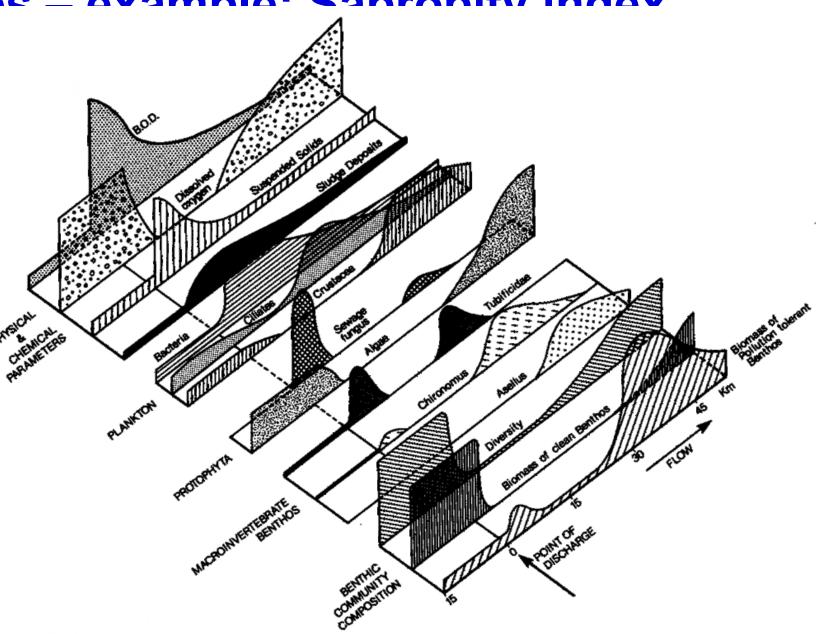
Xeno & oligosaprobity

Obr. 132. Příklad xenosaprobních a oligosaprobních organismů a - perloočka Holopedium gibberum, b - vodní mech Fontinalis, c - dvojčatkovitá řasa Micrasterias truncata, d - ploštěnka Dugesia gonocephala, e - jepice Epeorus asimilis, f - rozsivka Tabellaria flocculosa, g - ploštěnka Crenobia alpina, h - obrněnka Ceratium hirundinella, i - rozsivka Meridion circulare

Polysaprobity

Obr. 135. Příklad polysaprobních organismů

a - bakterie Sphaerotilus natans, b - pakomár Chironomus thummi, c - nitěnky Tubifex tubifex, d - pestřenka r. Eristalis, e - vířník Rotaria neptunia, f - bičíkovec Hexamitus inflatus, g - bičíkovec Bodo putrinum, h - bakterie Beggiatoa alba


Indicator species – example: Sanrahity index

Community shift

$$S = \frac{\sum_{i=1}^{n} A_i \cdot s_i \cdot g_i}{\sum_{i=1}^{n} A_i \cdot g_i}$$

- Ai abundance of species i
- Si individual saprobity value of species i
- gi indikative value of species i

How to choose the bioindicator ?

Procedures used to monitor biological endpoints in real ecosystems should ideally be:

- 1. virtually applicable
- 2. easily interpreted by the executive body
- 3. ecologically relevant to multiple ecosystems
- 4. the resulting parameter should be separable from natural fluctuations
- 5. should give a causal relationship between substance and effect
- 6. fast and cheap
- 7. standardizable

How to choose the bioindicator ?

Intrinsic importance Key: indicator is the endpoint Economic species Endangered species Other aspects of direct importance to humans

Early warning indicator Key: rapid indication of effect Use when endpoint is slow or delayed in response or too variable in time or space Minimal time lag in response to stress (rapid response rate) Signal-to-noise ratio low; discrimination low Screening tool; accept false positives

Sensitive indicator Key: reliability in predicting Use when endpoint is relatively insensitive Stress specificity Signal-to-noise ratio high Minimize false positives

Process indicator Key: endpoint is process Monitoring other than biota, e.g., decomposition rates Complement structural indicators

Indicator of ecosystem sensitivity/vulnerability Key: system attributes Abiotic indicators such as flushing rates; neutralization capacity; nearby seed sources

INUNI RECETOX Kelly J. & Harwell M. (1990).

Signal-to-noise ratio Sensitivity to stress Intrinsic stochasticity

Rapid response Early exposure Quick dynamics Stress-specific sensitivity

Reliability of response Specificity to stress

Ease/economy of monitoring Field sampling Laboratory expertise Preexisting data base and history Easy test for process

Relevance to endpoint Instrinsic String of ecological connections

Feedback to regulation or management Adaptive management potential Hierarchical suites of indicators

Relevance to recovery processes Short-term and long-term processes Refugia, colonizing capacity Adaptation to new physical constraints

Selection of parameters - pros and contras

Functional group	Organisms Indicator Method St				Sensitivity to soil type	Sensitivity to land use	Meas
		Biomass /	SIR, fumigation-extraction	Yes	Good	Good	Good
		activity	ATP concentration, initial rate of mineralisation of glucose	Yes			
		Activity	Respiration rate/quotient/ratio,	Yes	Good	Medium	Good
			Nitrification, N mineralisation, C mineralisation	Yes	Medium	Medium	
			Denitrification	No	Medium	Medium	
			N-fixation	No	Good	Medium	
Microbial			Mycorrhizae (% of root colonised)	No	Good	Good	
Microbial Decomposers Micr	Microorganisms	Enzymatic	Dehydgenase activity	Yes	Good	Good	Mediur
		activity	Other enzymatic activity tests: phosphatase, sulphatase,	No	Good	Good	Good
			etc.	No	Very good	Very good	
			Enzyme index				
		Diversity	Culture-dependent methods: direct count, community-level	No	Poor	Poor	Good
			physiological profiles				
			Culture independent methods: fatty acids analysis, nucleic	No	Poor	Very good	Good
			acid analysis				(technica
Biological	Protists,	Abundance	Culture-dependent methods: direct count (diversity index,	Yes	Good	Very good	Low (ti
regulators	nematodes	and	functional or trophic diversity)				expertis
		Diversity	Culture independent methods: fatty acids analysis, nucleic				
			acid analysis				
	Microarthropods	Counting	Litter-bag technique (colonisation capacity)	No	Good	Good	Low (ti
	(springtails,		Soil coring				expertis
	mites)	Abundance	Community composition, ecological groupings	Yes	Very good	Very good	Low (ti
		and					expertis
		Diversity					
Soil ecosystem	oil ecosystem Earthworms, Abundance Species richness, diversity, evenness		Species richness, diversity, evenness	Yes	Very good	Good	Good
engineers	isopods	Diversity		(ongoing)			expertis simple)

Table 5-1: Simple indicators of soil biodiversity. Meas.= measurability

EC (2010): Soil biodiversity: functions, threats and tools for policy makers. https://core.ac.uk/display/29245351

MUNI RECETOX

 example of soil quality bioindicators – are there related to soil ecosystem services?

Soil ecosystem	parameter	Microbial indicator		Supply of clea
Function	C-cycling	Soil respiration		
		Metabolic quotient (qCO2)		
		Decomposition of organic matter		
		Soil enzyme activity		
	N-cycling	N-mineralization		
		Nitrification		
		Denitrification		Course have a first
		N-fixation		Supply of cle
	General activities	Bacterial DNA synthesis		
		RNA measurements		
		Bacterial protein synthesis		
		Community growth physiology		Pest control i
	Root-activity	Mycorrhiza		rest control i
Biodiversity	General biomass	Microbial biomass: direct methods		
		Microbial biomass: indirect methods		
		Microbial quotient		
		Fungi		Changeabilit
		Fungi-bacteria ratio		
		Protozoa		
	Biodiversity	Structural diversity		Resilience an
		Functional diversity		
		Marker lipids		
		Suppressiveness to pathogens		
	Bioavailability of	Biosensor bacteria		
	contaminants	Plasmid-containing bacteria		
		Biomarker species		
		Incidence and expression of catabolic genes	Jensen J. &	

Ecosystem service	Important ecological parameters
Supply of nutrients	Food web including earthworms Primary production Ratio of bacteria/fungi (De)nitrification
Water regulation	Earthworms Abundance and ratio bacteria/fungi pH, content of soil organic matter, groundwater level
Soil Structure	Earthworms Abundance and ratio of bacteria/fungi pH, content of soil organic matter Nematode Channel Ratio
Supply of clean shallow groundwater	Specific activity of bacteria and fungi Clean soil (concentration of pollutants lower than a maximum concentration) Extent of leaching of nitrogen, phosphate, and halogenated pollutants (EOX) Activity of the nitrogen cycle
Supply of clean deep groundwater	Amount and biodiversity of bacteria and fungi Clean soil Extent of washout of nitrogen and phosphate
Pest control in agriculture	Plant Parasitic Index of nematodes Amount and ratio of bacteria and fungi Mycorrhiza fungi
Changeability of soil use	Diversity of soil organisms Concentration of nitrogen and phosphate in the soil
Resilience and resistance	Diversity (within functional groups)

Jensen J. & Mesman M. (2006). Ecological risk assessment of contaminated land. Decision support for site specific investigations. Report 711701047. RIVM, Netherlands

Example of available methods to measure soil microbial properties

	ISO 14238:2012	Soil quality — Biological methods — Determination of nitrogen mineralization and nitrification in soils and the influence of chemicals on
		these processes
	ISO 15685:2012	Soil quality — Determination of potential nitrification and inhibition of nitrification — Rapid test by ammonium oxidation
	<u>ISO 18187:2016</u>	Soil quality — Contact test for solid samples using the dehydrogenase activity of Arthrobacter globiformis
	<u>ISO 17155:2012</u>	Soil quality — Determination of abundance and activity of soil microflora using respiration curves
	<u>ISO/TS 10832:2009</u>	Soil quality — Effects of pollutants on mycorrhizal fungi — Spore germination test
	ISO/CD 23265	Soil quality — Test for estimating organic matter decomposition in contaminated soil
	<u>ISO 16072:2002</u>	Soil quality — Laboratory methods for determination of microbial soil respiration
biomass 🗕	ISO 14240-1:1997	Soil quality — Determination of soil microbial biomass — Part 1: Substrate-induced respiration method
	ISO 14240-2:1997	Soil quality — Determination of soil microbial biomass — Part 2: Fumigation-extraction method
enzyme	ISO 23753-1:2019	Soil quality — Determination of dehydrogenases activity in soils — Part 1: Method using triphenyltetrazolium chloride (TTC)
activity	ISO 23753-2:2019	Soil quality — Determination of dehydrogenases activity in soils — Part 2: Method using iodotetrazolium chloride (INT)
L Г	ISO/TS 29843-1:2010	Soil quality — Determination of soil microbial diversity — Part 1: Method by phospholipid fatty acid analysis (PLFA) and phospholipid ether lipids (PLEL) analysis
diversity • structural	ISO/TS 29843-2:2011	Soil quality — Determination of soil microbial diversity — Part 2: Method by phospholipid fatty acid analysis (PLFA) using the simple PLFA extraction method
• genetic	ISO 11063:2020	Soil guality — Direct extraction of soil DNA
functional	ISO 17601:2016	Soil quality — Estimation of abundance of selected microbial gene sequences by quantitative PCR from DNA directly extracted from soil
	ISO 20130:2018	Soil quality — Measurement of enzyme activity patterns in soil samples using colorimetric substrates in micro-well plates
	ISO/TS 20131-1:2018	Soil quality — Easy laboratory assessments of soil denitrification, a process source of N2O emissions — Part 1: Soil denitrifying enzymes activities
	ISO/TS 20131-2:2018	Soil quality — Easy laboratory assessments of soil denitrification, a process source of N2O emissions — Part 2: Assessment of the capacity of soils to reduce N2O
Ľ		
	ISO 11266:1994	Soil quality — Guidance on laboratory testing for biodegradation of organic chemicals in soil under aerobic conditions
	ISO 15473:2002	Soil quality — Guidance on laboratory testing for biodegradation of organic chemicals in soil under anaerobic conditions
	ISO 14239:2017	Soil quality — Laboratory incubation systems for measuring the mineralization of organic chemicals in soil under aerobic conditions
	RECETO	X

Example of available methods to measure soil invertebrates

Indicator system	Principle	Application	Reference				
Nematode maturity	Nematodes classified	Can be applied to all	Bongers (1990),				
index	on a "colonizer" -	soils; measures	Yeates and Bongers	Indicator system	Principle	Application	Reference
	"persister" scale	general response to stress (metals, acidification, eutrophication)	(1999)	REAL model for earthworms	Integrated data base of various aspects related to the ecological and agronomical role of	Very wide application	Bouché (1996)
Predatory mite	Mesostigmatid mites	Mostly limited to	Ruf (1998)		earthworms		
maturity index	classified according to an r-K score	forest soils; measures soil properties related to mull/mor humus		Enchytraeid Reaktionzahl	Scores related to responses to acidity and humidity assigned to	Applicable to situations where effects on soil pH are manifested, for	Graefe (1993), Beylich et al. (1995)
Earthworm life-history	Earthworms classified	Can be applied to all	Bouché (1977),		enchytraeids	example cement factories	
strategies	according to position in the soil profile and burrowing behaviour cultivation (ploughing)	Paoletti (1999a)	SIVPACS	Pollution responses of earthworms, isopods and spiders, comparable to RIVPACS	Data base on species- specific responses not yet operational; at the moment only applied to heavy metal pollution	Spurgeon et al. (1996)	
MUNI	RECET	(2004): Vital (Eijsackers H.J.P. Soil - Function, perties. Elsevier. 0-444-51772-3	Woodlice life-forms	Classification of woodlice according to body shape and movement pattern	Composition of isopod fauna indicates effects of soil cultivation in agricultural landscapes	Paoletti and Hassell (1999)

Example of available methods to measure soil invertebrates

Indicator system	Principle	Application	Reference
Macro invertebrate	Enumeration of	Applied in orchards	Paoletti and
biodiversity	species richness of	and other agricultural	Somaggio (1996),
	earthworms, beetles,	ecosystems to indicate	Paoletti (1999b)
	isopods, spiders, ants,	land use and copper	
	millipedes,	pollution	
	centipedes, etc.		
Ant functional groups	Classification of ants	Wide application;	Andersen (1995)
	according to groups	used in evaluation of	
	reflecting	nature restoration and	
	susceptibility to stress	effects of mining	
Diptera feeding	Classification of	Reflects type of	Frouz (1999)
groups	dipteran larvae in five	organic materials in	
	feeding groups	soil; applicable to	
		organic soils	
Arthropod acidity	Classification of	Allows quantitative	Van Straalen and
index	arthropods (Collem-	estimation of soil pH	Verhoef (1997),
	bola, oribatids,	from invertebrate	Van Straalen (1998)
	isopods) according to	community structure	
	pH preference	-	

Indicator system	Principle	Application	Reference
Oribatid mite history strategies	Classification of mites according to reproductive and dispersal strategies	Indicates intensity of anthropogenic influence and successional stage of forests and grassland ecosystems	Siepel (1994), Siepel (1996)
Life-forms of Collembola	Classification of Collembola according to morphological types reflecting position in the soil profile	Indicates profile build-up and ecological processes stratified according to the profile; mostly applicable to forest soils	Van Straalen et al. (1985), Faber (1991)
Dominance distribution of micro arthropods	Lognormal distribution of numbers over species	General impression of disturbance; applied to effects of heavy metals and acid rain in forest and grassland soils	Hågvar (1994)
Biological Index of Soil Quality (BSQ)	System of scores assigned to groups of sol micro arthropods	Provides indication of biodiversity; wide applicability	Parisi (2001), Gardi et al. (2002)

RECETO MUNI

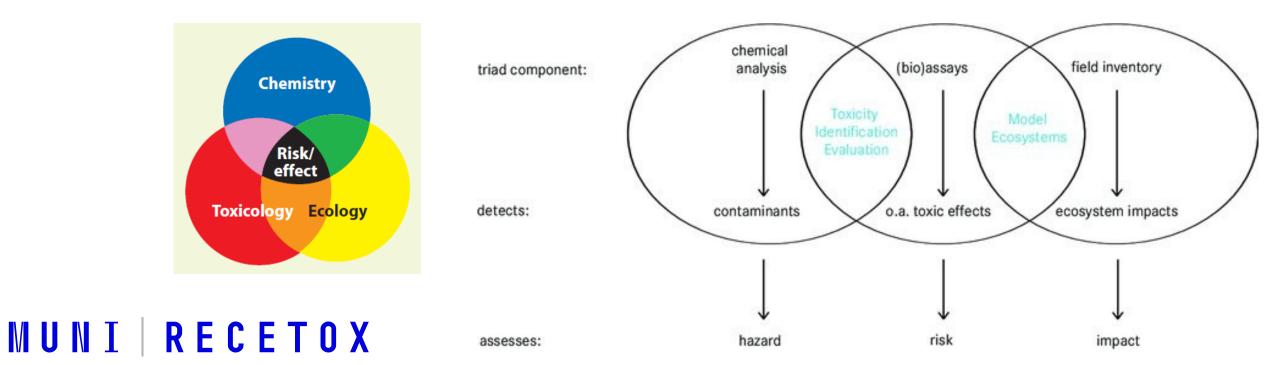
Doelman P. & Eijsackers H.J.P. (2004): Vital Soil - Function, Value and Properties. Elsevier. 358 p. ISBN: 0-444-

Example of approaches for plants

- composition of plant communities phytocenology
- function and condition of plants
 - measurement of photosynthesis (oxygen production, fluorescence of photosynthetic pigments)
 - o biochemical markers
 - genotoxicity (micronuclei, chromosome aberations)
 - functioning of nitrogen fixation, mycorrhiza
- leaf coverage
- monitoring the occurrence of indicator organisms
 - mycorrhitic fungi
 - o lichens
 - o diseases

MUN Ipollatants in plants

Example of approaches for mammals


- from practical reasons often focused on "small mammals"
 - presence / absence
 - repeated catch
 - activity
 - abundance
 - o density
 - richness
 - o diversity
 - o dynamics of the population / community...

MUNI RECETOX

TRIAD approach

TRIAD

- long tradition
- ISO 19204 (2017): Soil quality Procedure for site-specific ecological risk assessment of soil contamination (soil quality TRIAD approach)
- site-specific risk assessment with 3 lines of evidence (LoE)
- their evaluation = "weight of evidence" WoE

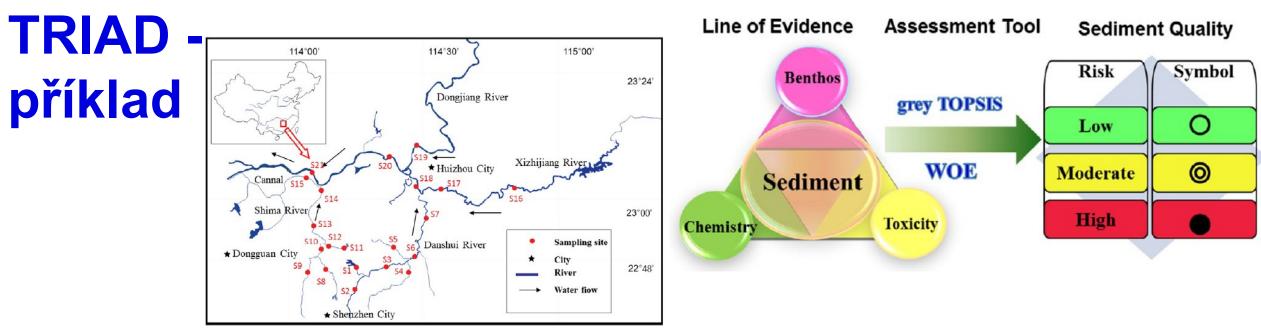
TRIADthere is scaling stepand finally integration of all results

Text Box 1. Examples on how to scale the results from two types of toxicity tests.

Scaling. Example 1. Results in percentages.

This method can be used as default when the results from the test are expressed as percentages (%), e.g. mortality (negative effect) or survival (positive effect). Note: the results have to lie between 0 and 100%.

Scaling method 1A. Negative response in reference/control sample


Test Example: Algae light inhibition

Data: Test results (%):	Reference 4.0	Site A 46	Site B 71							
Step 1. Divide data by 100. R1=X	/100									
	Reference	Site A	Site B							
Result (R1)	0.04	0.46	0.71							
Step 2: Scale difference betwee	n X and reference. R2 =	(X – Ref) / (1 – Ref)								
	Reference	Site A	Site B							
Result (R2)	0.0	0.44	0.70							
_	Scaling method 1B. Positive response in reference/control sample Test Example: Survival of earthworms									
Data:	Reference	Site A	Site B							
Test results (%):	98	40	10							
Step 1. Subtract from 100 and th	en divide by 100. R1=(100)-X)/100								
	Reference	Site A	Site B							
Result (R1)	0.02	0.60	0.90							
Step 2. Scale difference betwee	en X and reference. R2 = ((X – Ref) / (1 – Ref)								
	Reference	Site A	Site B							
Result (R2)	0.0	0.59	0.90							

Jensen J. & Mesman M. (2006). Ecological risk assessment of contaminated land. Decision support for site specific investigations. Report 711701047. RIVM, Netherlands

Integrated risk.

LoE – Chemistry:	Reference 0.00	Site A 0.77	Site B 0.84
LoE – Toxicology:	0.00	0.23	0.34
LoE - Ecology:	0.00	0.21	0.29
LUE - ECUIUYY.	0.00	0.21	0.29
Step 1. Calculate log to (1-scaled result). R1 = lo	ig(1-X)		
	Reference	Site A	Site B
LoE – Chemistry:	0.00	-0.64	-0.80
LoE – Toxicology:	0.00	-0.11	-0.18
LoE – Ecology:	0.00	-0.10	-0.15
Step 2. Average all log-values to one integrated	log value. R2 = Ave	rage (X ₁ X _n)	
	Reference	Site A	Site B
Result (R2)	0.00	-0.29	-0.38
Step 3. Transform log-values into integrated risk	(IR) values. R3 = 1-	(10^R2)	
	Reference	Site A	Site B
Result (R3 = Integrated Risk)	0.00	0.48	0.58
Step 4. Calculate standard deviation (Std) of the	integrated results	for each site, i.e. th	ree LoE
	Reference	Site A	Site B
Result (R4 = Std)	0.00	0.55	0.53

Table 1

Jiang et al. (2015)

Selection method of metric values of the better site and worse site used in the case study.

	Chemical metric	Toxicological metric	Ecological metric					
The better site	CB-TECs ^a	$0.2 \times (100\%$ inhibition rate or the maximum FII index $^{\rm c})$	0.2 \times the 95th percentile of cost metric values or 0.8 \times the 95th percentile of benefit metric values $^{\rm d}$					
The worse site	CB-PECs ^b	$0.5 \times (100\%$ inhibition rate or the maximum FII index)	$0.5 \times$ the 95th percentile of cost metric values or $0.5 \times$ the 95th percentile of benefit metric values					
^a CB-TECs = threshold effect concentration of Consensus-Based Sediment Quality Guidelines (MacDonald et al., 2000).								

^b CB-PECs = probable effect concentration of Consensus-Based Sediment Quality Guidelines (MacDonald et al., 2000).

^c FTI index is the fish teratogenic index of zebrafish embryo, whose range is 0–3.

^d Cost metric is the metric that smaller is better, while benefit metric is the metric that bigger is better.

Table 2

Ecological risk ranking and final management decision.

Ecological risk	Corresponding symbol	Sequence	Definitive final decision of overall evaluation
Low Moderate High	0 ©	In front of the better site Between the better site and worse site Behind the worse site	No further actions needed Additional assessment required Management actions required
ULIUA			

TRIAD - příklad

Sites	Chemical LOE Toxicological LOE Ecolo		Ecological	Ecological LOE										
	$C +^{a}$	Sequence ^b	Symbol ^c	C+	Sequence	Symbol	C+	Sequence	Symbol					
Better site	0.743	3	0	0.704	3	0	0.766	1	0					
Worse site	0.378	22	0	0.522	11	0	0.682	5	0					
S1	0.721	5	0	0.553	8	O	0.666	6	•					
S2	0.627	17	0	0.405	20	•	0.405	16	•					
S3	0.446	20	0	0.488	14	•	0.314	18	•					
S4	0.443	21	0	0.777	1	0	0.494	11	•					
S5	0.700	10	Ø	0.468	18	•	0.720	2	<u> </u>					
S6	0.690	12	0	0.472	16	•	0.604	Sites	Relax e	ffect		Strict e	ffect	
S7	0.690	11	0	0.580	6	Ø	0.499			- h			-	
S8	0.558	18	0	0.471	17	•	0.167		C+ ^a	Sequence ^b	Symbol ^c	C+	Sequence	Symbol
S9	0.748	2	0	0.269	22	•	0.491	Better site	0.711	1	0	0.765	1	0
S10 S12	0.711 0.667	8	0	0.542 0.384	9	0	0.322 0.238			1	0		1	0
S12 S13	0.007	15 6	0	0.384	21 19		0.238	Worse site	0.499	14	0	0.537	9	0
S13	0.650	16	0	0.425	4	0	0.414	S1	0.623	4	0	0.613	5	0
S15	0.722	4	0	0.506	13		0.302	S2	0.451	18	•	0.445	18	•
S16	0.753	1	õ	0.754	2	ŏ	0.596	S3	0.412	19	•	0.399	19	•
S17	0.713	7	0	0.478	15	ĕ	0.689	S4	0.538	10	0	0.523	11	
S18	0.503	19	0	0.666	5	0	0.443		0.615	5		0.615	4	
S19	0.707	9	0	0.520	12	•	0.607	S5			0		-	0
S20	0.678	13	0	0.570	7	0	0.710	S6	0.563	8	0	0.561	8	0
S21	0.675	14	0	0.540	10	0	0.454	S7	0.543	9	0	0.537	10	•
								S8	0.390	22	•	0.377	22	•
								S9	0.473	16	•	0.464	16	•
								S10	0.482	15	•	0.473	15	•
								S12	0.391	21		0.388	21	
liana	et al. (20	15)						S13	0.399	20	•	0.393	20	•
Jiany	et al. (20	15)						S14	0.526	11	0	0.520	12	•
								S15	0.464	17	•	0.455	17	•
								S16	0.637	3	0	0.626	3	0
								S17	0.609	6	0	0.600	6	0
								S18	0.508	13	0	0.500	14	ě
										7				-
								S19	0.589		0	0.593	7	0
								S20	0.639	2	0	0.629	2	O
		ECE						S21	0.518	12	0	0.506	13	•
	L 1 \													

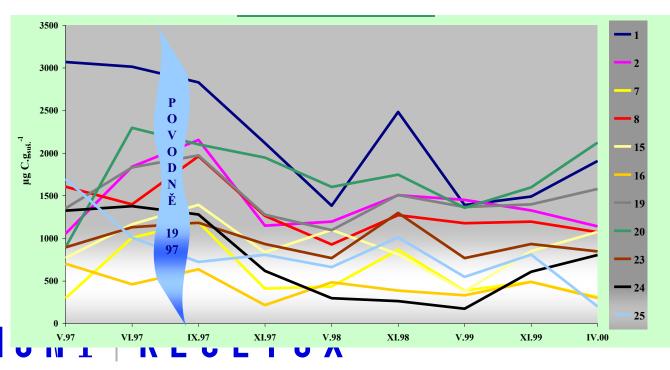
MUNI RECETOX

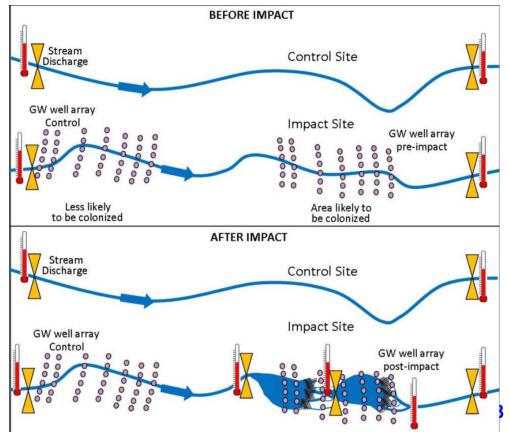
Problems in field ecotoxicology

Problems in the field studies

- natural fluctuations, large influence of environmental factors
- Contamination data in most cases focus on total content
 - biota, however, reacts only to bioavailable fraction that depends on many factors (cannot be well modeled)
 - as a result, we often do not see the causality between pollution and the condition of biota, except of very high concentrations
- The observed phenomena have a stochastic character
 - There is a natural scattering in space and time!
 - Do we have a sufficiently representative sample? What do we really sample and measure?
- Contamination often acts as a selection pressure
 - Long -term load can lead to creating adaptations and tolerances or even stimulation (especially in microorganisms)

• Do we know the history of the locality contamination well? $\mathbf{R} \in \mathbf{C} \in \mathbf{T} \circ \mathbf{X}$


Problems in the field studies


- Total interconnection by food and ecological links, continuity of processes
 - Changes in the activity of one community or population in relation to other communities and functions that are linked
 - Inhibition of one ecosystem component can stimulate another component
- Organisms themselves can affect chemical forms of pollutants
 - For example, sorbed forms of substances may be mobilized again, or microbial degradation may come
- The problem of optimal field study design (biomonitoring)
 - Need of a reference state non-contaminated / non-impacted site (comparison with control)
 - or a large dataset (correlation, causality)
 - o or time trends (BACI

A reference state is needed

BACI = comparing Before and After Control Impact

- a control = state of ekosystém before the impact
- it needs a monitoring before the impact happens (both biotic and abiotic components must be observed)
- ie background values and "natural" state

A reference state is needed

Comparison of an exposed ecosystem with another ("control, – un-impacted) ecosystem

- The key is the choice of a control ecosystem:
 - Both ecosystems have comparable abiotic properties (terrain, geology, altitude ...)
 - Similar biological properties are expected in normal state (ie the same communities, food relations ...)
- The derivation of the conclusions in this case is always complicated (there are no two same / equally evolving ecosystems)

"Normal" state in the ecosystems

stationary state

- long term state, no disturbances
- this is often not "normal": ecosystems are naturally "variable" and "changing"

stable state

 surrounding conditions / factors do not change the major features (functions, overal performance ...), but inside there might be changes and fluctuations

dynamic stability / ekvilibrium = homeostasis

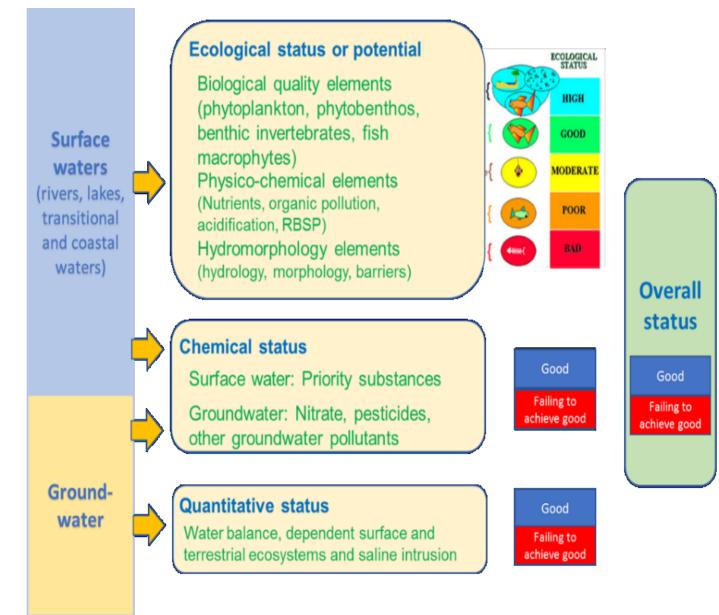
- using action/reaction, positive and negative feedback it keeps long-term stable state
 succession
- ecosystems are never "stationary" the go through development in time: so, the Protection should not simply aim on "conservation of the current state"

"Normal" state in the ecosystems

- regulatory approach example: water framework directive EU (WFD)
- EU WFD aims at good status of all surface waters in EU till 2020
- 2 components of quality assessment ("good state") "ecological" and "chemical"

Chemical component

- 3 lists of defined substances
 - Priority substances list


RECETOX

- good quality = concentration of each individual chemical < EQS (Environmental Quality Standards), AA-EQS – annual average concentration, MAC-EQS – maximum acceptable concentration
- watch list these should be measured for the future assessment, they may become Priority substances
- specific pollutants according to the plans of the river basins "river basin specific pollutants)

"Normal" state in the ecosystems

- regulatory approach –
 example: water framework directive EU (WFD)
- EU WFD aims at good status of all surface waters in EU till 2020
- 2 components of quality assessment ("good state") -"ecological" and "chemical"

Ecological component

