Structural and electronic properties of Mn doped topological insulators Bi_2Te_3 and Bi_2Se_3

O. Caha, J. Růžička, V. Holý

G. Springholz, V. Volobuev, H. Steiner, S. Wimmer, A. Ney, G. Bauer

IANNES KEPLER

O. Rader, J. Sanchez-Barriga, P. Mandal, E. Rienks, A. Varykhalov

M. Albu – Graz center electron microscopy J. Minár, S. Khan - ZČU Plzeň H. Ebert - Uni Mnichov

Outline

- Motivation
- Mn doped topological insulators thin films
 - sample preparation
 - structure: XRD, XAFS, HRTEM
 - magnetic properties
 - elektronic structure: ARPES
- Conclusion

Topological insulators

Band structure of topological insulator:

Large spin orbit splitting and time reversal symmetry

 \rightarrow spin polarized surface states with Dirac-cone dispersion

Prototypical materials: narrow band gap semiconductors Bi₂Se₃, Bi₂Te₃

Ferromagnetic ordering brakes time reversal symmetry

 \rightarrow band gap within surface states, Quantum anomalous Hall effect

Sample preparation

G. Springholz group, JKU Linz

Mn doped Bi₂X₃ thickness 300 to 500nm

```
Substrate BaF<sub>2</sub> (111)
```

Deposition technique: Molecular beam epitaxy

Compound sources: Bi_2Te_3/Bi_2Se_3 , additional Te/Se cell to achieve correct stoichiometry

Sample series: $Bi_{2}Te_{3}$ up to 11% of Mn doping $Bi_{2}Se_{3}$ up to 10% of Mn doping

Crystal structure of Bi_2X_3 (X=Se,Te)

Possible incorporation position of Mn atoms

Electron microscopy

JKU Linz, Graz

XRD structure analysis

Symmetric scan with scattering vector perpendicular to the surface

Higher Mn content leads to disturbed structure

Fitted with a paracrystal model: Random sequence of Bi_2X_3 (quintuple layers – QL) and Bi_2MnX_4 (septuple layer – SL)

XRD structure analysis

Paracrystal model parameters:

average length and RMSD of QL and SL segments

XRD structure analysis

In-plane lattice parameter dependence

X-ray absorption spectroscopy

Experiment at BM23, ESRF Grenoble

Very weak Mn concentration dependence

X-ray absorption spectroscopy

Simulations of various Mn positions

X-ray absorption spectroscopy

Magnetic properties SQUID (JKU Linz)

Transport measurements

Hall effect in van der Pauw geometry

Electronic structure

6% Mn doped Bi_2Se_3 at 1K

Temperature independent nonmagnetic gap 200 meV

Conclusion

- Mn doped topological insulators form natural heterostructure of alternating QL and SL segments
- Mn atoms are mostly positioned in the central position of septuple layer
- Ferromagnetic ordering has been observed with Curie temperature in range of 6K to 15K for Mn concentration above 3%
- Easy magnetization axis is:
 - Out-of-plane for bismuth telluride
 - In-plane for bismuth selenide
- Bismuth telluride shows large magnetic band gap of (90±10) meV opened bellow Curie temperature
- Bismuth selenide does show temperature independent band gap of ≈200 meV

Transport measurements

Hall effect in van der Pauw geometry

