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Magnetization curve

Task goals

Measurement options:

• Calibration of the magnetometer with a known sample (nickel plate) – mandatory
part.

• Changes in magnetization of an iron sample after annealing for different cooling rates.

• Comparison of hysteresis loop with magnetic field shielding permeability measure-
ments.

• Paramagnetic and diamagnetic susceptibility, anisotropy of diamagnetic susceptibi-
lity in graphite.

• Magnetocrystal anisotropy – differences in magnetization according to different di-
rections in a crystal.

Theory

The relationship between magnetic intensity H and magnetic induction B is given by

B = µ0 (H +M) , (1)

where M is the magnetization vector that gives the bulk magnetic moment density. The magnetic
moment is then the volume of the sample multiplied by the magnetization

m = VM . (2)

With the known density of the sample and its mass, we can then easily calculate the total magnetic
moment per atom. It is convenient to give the magnetic moment per atom in Bohr magneton units
µB = 9,274 · 10−24 Am2. Paramagnetic and diamagnetic materials at normal temperatures show
a linear dependence of magnetization on the external field

M = χH , (3)

where χ is the magnetic susceptibility, positive for paramagnetics and negative for diamagnetics.
Usually, the susceptibility is very small, in the order of 10−4 to 10−8. The relative permeability
is equal to mur = 1 +c hi. Ferromagnetic materials exhibit a nonlinear hysteresis dependence as
shown in figure 1. The main parameters of the hysteresis loop are the coercive field Hc when
the magnetization is zero, the remanent magnetization MR, and the saturation magnetization.
It is then possible to introduce an external field-dependent susceptibility as a derivative of the
magnetization

χ =
dM

dH
; . (4)
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Obrázek 1: Hysteresis dependence.

Often the value is given around the origin, i.e., for zero external magnetic field. This value is
important, for example, for the efficiency of transformers, where we are trying to work only in the
region of small far-saturation fields.

The change in magnetization of a ferromagnet is due to the movement of the material’s domain
walls and the volume of the individual domains. Defects in the crystal can slow down the movement
of the domain walls and lead to a change in the shape of the hysteresis curve. For example, we
can study the effect of the cooling rate of the material on the shape of the hysteresis loop. During
rapid cooling (quenching), more defects usually remain in the material than during slow cooling,
when the process is closer to thermodynamic equilibrium.

Vibrating sample magnetometer

The vibrating magnetized sample in the vicinity of the coil changes the magnetic field flux, which
induces an electromotive voltage in the coil according to Maxwell’s equations

U = −
dΦ

dt
. (5)
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Obrázek 2: Schematic drawing of the relative position of the sample as a magnetic dipole and the
detection coil.

A simple quantitative description of our experiment is possible in the approximation where
replacing the sample with a magnetic dipole. Furthermore, we will approximate the motion of the
sample close to the coil by a harmonic oscillation motion

z(t) = z0 +Az cos(ωt) (6)
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with amplitude Az with mean position z0. The situation is shown in Figure 2. The magnetic field
of a magnetic dipole is given by the relation [1, 2]

B(r) =
µ0

4πr3

[

3(r ·m)r

r2
−m

]

, (7)

where r is the position vector relative to the magnetic dipole, m is the magnetic dipole moment,
and µ0 is the vacuum permeability. The real arrangement uses four identical coils, denoted from
1 to 4. Consider first the magnetic flux through coil 1

Φ1(z(t)) =

∫

S1

n ·B(r)d2r; , (8)

where the integration is over the surface of the coil.
This magnetic flux depends on the dimensions and number of turns of the coil and the po-

sition of the sample and is directly proportional to the magnetic moment of the sample m. The
quantitative calculation of the magnetic flux is quite challenging; for small sample deflections, we
can approximate the dependence on the sample deflection by a Taylor expansion to the first order.

Φ1(z(t)) ≈ m [−C0 − C1z(t)] . (9)

According the symmetry of the other coils their particular fluxes are

Φ2(z(t)) ≈ m [−C0 + C1z(t)] , Φ3(z(t)) ≈ m [C0 + C1z(t)] , Φ4(z(t)) ≈ m [C0 − C1z(t)] . (10)

The resulting arrangement engages coils 1 and 4 with reversed polarity compared to coils 2 and
3, thus adding up the changes in magnetic flux in each coil. For the magnetic flux through the
coil assembly

Φ(t) = −Φ1(t) + Φ2(t) + Φ3(t)− Φ4(t) = 4mC1Az cos(ωt). (11)

To determine the voltage induced in the coil as the magnet moves, we use Faraday’s law (5). If
we perform the following the time derivative of the magnetic flux (11), we obtain for the voltage
induced in the collection coils

U(t) = −
dΦ

dt
= 4mC1Azω sin(ωt) = mC

√
2 sin(ωt) , (12)

where C is the calibration constant of the magnetometer, determined by measuring a known
sample.

This arrangement also has the advantage of being insensitive to changes in the external mag-
netic field. The electromotive voltage induced by a change in the external field is the same in
each coil. However, because two and two are connected with opposite polarity, the resulting in-
duced voltage is almost zero, except for variations due to inhomogeneity of the external field and
differences between coils.

Figure 3 shows the schematic of the magnetometer used.
By changing the external magnetic field (by changing the current flowing through the electro-

magnet), we can then measure the magnetization curve of the sample, i.e., the dependence of the
sample’s magnetic moment on the magnetic field.

Lock-in power supply

We use a so-called lock-in amplifier to suppress circuit noise. This device amplifies the AC com-
ponent of the measured signal, which has the same frequency as the reference signal. It very
effectively suppresses electromagnetic noise at frequencies other than the measured component.
This way, we can measure AC voltages in fractions of a microvolt. The reference signal source is
a small permanent magnet mounted on a vibrating rod outside the magnet and a reference coil
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Obrázek 3: Schematic layout of the magnetometer. The iron core of the electromagnet is plotted
in yellow, electrical windings in green, collecting coils in red, the sample in blue, and the vibrating
rod in black

.

in its vicinity. Thus, the reference signal has the same frequency and phase as the measured signal.
It is advisable to use an experimental frequency different from the possible sources of interference;
in particular, it is a good idea to avoid multiples of the mains frequency of 50Hz, and so on.

The lock-in amplifier measures the centered value

Uout =
1

T

∫ t+T

t
Uin(τ) sin(ωrefτ + φ)dτ ; , (13)

where Uin is the input signal, ωref is the frequency of the reference signal, φ is the tunable phase
shift, and T is the selectable time constant of the lock-in amplifier, always much larger than
the period of the measured signal. For a harmonic input signal with the same frequency as the
reference and zero phase shift, the output voltage is equal to the effective value of the harmonic
component of the voltage (amplitude in formula (12) divided by

√
2):

Ulock−in = Cm, (14)

where C is the calibration constant of the magnetometer.

Demagnetization field

For a correct interpretation of the measured data, the demagnetization field in the sample must
still be considered. The magnetic field inside the sample Hi, Bi differs from that outside the sample
He, Be. The magnetic field near the sample is affected by it and is inhomogeneous. Obviously holds

Be = µ0He , Bi = µ0(Hi +M) . (15)

Furthermore, the continuities of tangential intensity components and normal components at the
interface are valid. The solutions are related to the fields inside the sample:

Hi = He −NM ; , Bi = µ0(Hi +M) = Be + µ0(1−N)M , (16)

where N is the demagnetization factor depending on the shape and orientation of the sample with
respect to the magnetic field direction. Some values are given in table 1. In our case, we restrict
ourselves to samples from a thin plate with magnetic field orientation in the plane of the plate.
The demagnetization factor is negligible, and the correction according to the relation (16) need
not be considered.
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Tabulka 1: Table of demagnetization factor for some special cases.

field shape orientation N

sphere arbitrary 1/3
thin plate perpendicular to the plane 1
thin plate in plane 0
long thin cylinder along the axis of the cylinder 0
long thin cylinder perpendicular to the axis 1/2

Magnetic field shielding in a cylindrical cavity

Theory

The magnetic permeability of materials µ expresses the relationship between magnetic induction
and magnetic intensity B = µrµ0H and can be studied through magnetic field shielding. For
non-ferromagnetic materials, the relative permeability µr takes values very close to one, so their
response in a magnetic field is not very different from that of a vacuum. The permeability of
ferromagnetics is related to the hysteresis curve; the permeability is proportional to the tangent
directive to the hysteresis curve. For ferromagnetics, it can take on very high values but depends
strongly on the magnitude of the magnetic field. Magnetically soft ferromagnetics (small coercive
fields) have high permeabilities, while magnetically hard materials have low permeabilities. Mag-
netically hard materials have permeabilities in the order of tens to hundreds, while magnetically
soft unique materials with high permeabilities can reach values as high as 106. We can assume
a linear dependence of B = µrµ0H with constant permeability for small magnetic fields and
magnetically soft materials.

Magnetic field shielding in a cylindrical cavity

If we place a hollow cylinder of radius R in a homogeneous magnetic field of magnitude Bo

perpendicular to the cylinder’s axis, the field inside the cylinder is also homogeneous of lower
magnitude Bi. The complete calculation is somewhat tedious [3, 2], here we restrict ourselves to
stating the assumptions:

• Magnetic intensity and induction satisfy Maxwell’s equations in the absence of external
currents

divB = 0, rotH = 0. (17)

• A linear material relation relates the magnetic induction and intensity

B = µrµ0H. (18)

• The tangential component of the magnetic intensity is continuous at the interface of two
environments.

• The normal component of magnetic induction is continuous at the interface of two environ-
ments.

• The magnetic induction at a large distance r from the cylinder axis is

B(r ≫ R) = Bo. (19)

Figure 4 shows the resulting magnetic field waveform. The ratio of the induction outside Bo to
that inside the tube Bi is given by the shielding coefficient S, for which the relation [3, 2]

S =
Bo

Bi
=

(µr + 1)2 − b2

a2 (µr − 1)2

4µr
, (20)



Magnetization curve 6

Zdroj

Hall

trubka

A
V

Obrázek 4: Left: The magnetic field lines in and around a hollow cylinder made of ferromagnetic
material with permeability µr = 10. In the close vicinity of the cylinder, the homogeneity of
the magnetic field is somewhat disturbed. Right: Schematic diagram of the Helmholtz coils. The
position of the shielding tube and the Hall probe for measuring the magnetic field are indicated.

where a is the outer radius, and b is the inner radius of the hollow cylinder. For high values of
magnetic permeability µr ≫ 1 and the small wall thickness of the tube d relative to its radius
d ≪ R, we can use the approximate relation

S =
Bo

Bi
≈ 1 +

µrd

2R
. (21)

The above relations hold for small magnetic fields. Especially inside materials with high permea-
bility, the maximum value of the magnetic induction (approximately equal to Bmax ≈ µrBo) can
easily exceed the saturation magnetization of the material (for iron about 2.2T), and the overall
shielding coefficient then comes out effectively lower. This property appears as a dependence of
the shielding coefficient on the external field, which decreases with a larger external field. The
low-field permeability value is obtained from the low-field shielding coefficient values, where the
shielding coefficient is independent of the field strength.

Homogeneous magnetic field in Helmholtz coils

Helmholtz coils are the simplest way to create a homogeneous field. These are two coils of the
same number of turns and radius R placed on a common axis at a distance of their radius R from
each other. The magnetic field of one coil can be calculated using the Biot-Savart law

H =

∫

I

4πr3
r × dl, (22)

where I is the current flowing through the conductor, r is the distance of the length element dl
from the field measurement point. The magnetic field on the axis of a narrow coil of radius R with
N turns at a distance z from the center of the coil is easily calculated as

H(z) =
NIR2

4π(R2 + z2)3/2

∫ 2π

0

dϕ =
NIR2

2(R2 + z2)3/2
. (23)

The magnitude of the magnetic in the center of the cavity of the Helmholtz coils is obtained as
the sum of the contribution of both coils (the distance of the center of the cavity from the center
of each coil is z = R/2)

H = 2
NIR2

2(R2 + (R/2)2)3/2
=

(

4

5

)3/2 NI

R
. (24)
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Obrázek 5: Left: Magnetic field strength on the axis of Helmholtz coils with radius R = 5 cm.
Right: Distribution in the plane of the axis of Helmholtz coils. Shown are the contours for the
0.90, 0.95, 0.99, and 1.01 values at the center of the cavity. In the star-shaped region’s center
region, the magnetic field magnitude deviation is less than 1%.
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Obrázek 6: The principle of the Hall effect.

Hall probe magnetic field measurements

Use the Hall effect to measure the magnitude of the magnetic field. When charge carriers in a
sample move in a magnetic field (electrons or holes in a semiconductor), the Lorentz force acts on
them perpendicular to the direction of their motion

F L = qvd ×B, (25)

where q is their charge and vd is their drift velocity. In the steady state, an electric field EH is
generated, which eliminates the effect of the Lorentz force

FH = qEH = −F L. (26)

We substitute the drift velocity vd = j
nq = 1

nq
I
wd , where j is the current density, n the concentration

of charge carriers, d the thickness and w the width of the sample. Then, by comparing these
relations, we get the relation for Hall stress

UH = EHw =
RH

d
I B, (27)

where RH = 1
nq is the Hall constant and d is the sample thickness. The sign of the Hall constant

corresponds to the sign of the charge carriers, thus allowing us to determine the conductivity type
and measure the charge carriers’ concentration. Conversely, a Hall probe of known parameters can
measure magnetic induction. We will use a commercial Hall probe with integrated current source
and amplifying electronics of unknown parameters.
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Measurement progress

Make a magnetic field measurement without the tube inserted, and measure the Hall voltage Uo

proportional to the external magnetic field Bo. With the tube inserted, measure the voltage Ui

proportional to the magnetic induction inside the tube Bi. The shielding coefficient S is equal to
the fraction of the voltage

S =
Uo

Ui
. (28)

To eliminate any possible mids-setting of the zero (zero voltage may not correspond to a state
without a magnetic field), we make measurements for both commutations of the current (+ and
−) and then average the resulting voltage concerning the sign

U =
1

2
(U+ − U

−
) . (29)

Úkoly

1. Plug the Helmholtz coils into the circuit.

2. Measure the shielding coefficient S and the dimensions of the set of cylindrical tubes pro-
vided. Measure the external field Bo at the center of the cavity without the shielding tube
inserted and the value of Bi after the shielding tube is inserted. Make measurements for
several current values through the coils (recommended values of 0.5A, 1.5A and 2.5A) and
see if the shielding coefficient is independent of the external field strength. Measure for both
directions of the current commutation.

3. Calculate their permeability using the relation (21) or (20).

Recommended procedure and tasks for measurements

The student has three weeks to make the measurements. Recommended procedure:

• First week – familiarization with the magnetometer; calibration of the magnetometer using
a reference sample (nickel plate).

• Second and third week – measuring the magnetization curve for several samples according
to the target.

The output of the practicum will be presented to the instructor in the form of graphs and
measured dependencies, including an estimate of uncertainties where possible and appropriate

Reference

[1] D. Griffith, Introduction to electrodynamics, Prentice-Hall (1999).

[2] J.D. Jackson: Classical electrodynamics, Willey (1999).

[3] J. Perry, Proc. Phys. Soc. London 13, 227 (1894).


	Task goals
	Theory
	Vibrating sample magnetometer
	Lock-in power supply
	Demagnetization field

	Magnetic field shielding in a cylindrical cavity
	Magnetic field shielding in a cylindrical cavity
	Hall probe magnetic field measurements

	finaltextcolÚkoly
	Recommended procedure and tasks for measurements

