Základy molekulární biofyziky (in English)

Part 6: Cellular Structural Biology - NA

DNA as a drug target

Environmentally Promoted Deformability:

a fundamental difference between DNA and RNA

RNA structure is insensitive to environmental conditions

(Δ pH, Δ ion strengh, ion type, hydration, MC)

DNA structure is sensitive to environmental conditions

(Δ pH, Δ ion strengh, ion type, MC, hydration)

... even helix geometry is controlled by environment

Vargason et al. PNAS 2001

Polymorphism as a source of "targets"

Polymorphism as a source of "problems" in the process of drug development

Architecture of telomeric in G-rich single stranded 3'-overhang - d(TTAGGG)n

Lim et al. J Am Chem Soc. (2009)

Structural Biology of NA – an issue

How to recognize physiologically relevant structure

Structural Biology of NA – methods

X-ray diffraction

... thus far, it is not possible to detect diffraction from single molecule 3

X-ray diffraction relies on

monocrystal production

X-ray diffraction &

monocrystal production

Crystal Screen[™]

Tube #	Salt	Tube #	Buffer ◊	Tube #	Precipitant
1.	0.02 M Calcium chloride dihydrate	1.	0.1 M Sodium acetate trihydrate pH 4.6	1.	30% v/v (+/-)-2-Methyl-2,4-pentanediol
2.	None	2.	None	2.	0.4 M Potassium sodium tartrate tetrahydrate
3.	None	3.	None	3.	0.4 M Ammonium phosphate monobasic
4.	None	4.	0.1 M TRIS hydrochloride pH 8.5	4.	2.0 M Ammonium sulfate
5.	0.2 M Sodium citrate tribasic dihydrate	5.	0.1 M HEPES sodium pH 7.5	5.	30% v/v (+/-)-2-Methyl-2,4-pentanediol
6.	0.2 M Magnesium chloride hexahydrate	6.	0.1 M TRIS hydrochloride pH 8.5	6.	30% w/v Polyethylene glycol 4,000
7.	None	7.	0.1 M Sodium cacodylate trihydrate pH 6.5	7.	1.4 M Sodium acetate trihydrate
8.	0.2 M Sodium citrate tribasic dihydrate	8.	0.1 M Sodium cacodylate trihydrate pH 6.5	8.	30% v/v 2-Propanol
9.	0.2 M Ammonium acetate	9.	0.1 M Sodium citrate tribasic dihydrate pH 5.6	9.	30% w/v Polyethylene glycol 4,000
10.	0.2 M Ammonium acetate	10.	0.1 M Sodium acetate trihydrate pH 4.6	10.	30% w/v Polyethylene glycol 4,000
11.	None	11.	0.1 M Sodium citrate tribasic dihydrate pH 5.6	11.	1.0 M Ammonium phosphate monobasic
12.	0.2 M Magnesium chloride hexahydrate	12.	0.1 M HEPES sodium pH 7.5	12.	30% v/v 2-Propanol
13.	0.2 M Sodium citrate tribasic dihydrate	13.	0.1 M TRIS hydrochloride pH 8.5	13.	30% v/v Polyethylene glycol 400

HR2-110 Reagent Formulation

... underlying assumptions

Lowest energy structure is biologically active

structure is independent of environmental conditions

additives, hydration levels, temperature, MC, viscosity, concentration, ion type, ion strength,

PDB statistics

Exp. Method	Proteins	Nucleic Acids	Protein-NA	Other
			complexes	
X-ray	75 215	1 464	3 888	2
NMR	8 737	1 030	192	7
El. Microsc.	428	45	128	0
Hybrid	46	3	2	1
Other	148	4	6	13
Total	84 574	2 546	4 216	23

Nuclear Magnetic Resonance

Sample: water based solutions, [biomolecule] $\sim 50 - 3$ mM, Te $\sim 0 - 45$ °C

NMR spectroscopy

... underlying assumptions

Lowest energy structure is biologically active (in principle NMR also allows determination of high energy states)

NMR spectroscopy

... can be physiological, but ...

Ionic composition of:

Intracellular space

Extracellular space

potassium sodium magnesium calcium ion not specified

Ionic composition of buffers used for NMR studies of:

Structural Biology – an issue

Precision vs. accuracy

Structural Biology – an issue

conventional NMR as well as X-ray

.. are only able to assess structure precision

X-ray - Resolution

NMR spectroscopy - RMSD

.. NOT its accuracy

Dark secret of structural biology

X-ray & NMR "shoot" without knowing where the target is

... assessment of structural accuracy presumes knowledge of reference structure

Cellular Structural Biology

... on target shooting

Cellular Structural Biology – a concept

How to find a "target"

In vitro structure & dynamics

Cellular Structural Biology - proteins

- a history

Proteins

- in-cell NMR of proteins **overexpressed** in bacterial cells **2006**
- In-cell NMR of proteins delivered into X. laevis oocytes
 2009
- In-cell NMR of delivered proteins in mammalian cells;
 1st high resolution structure of protein inside living cells

2011 ...

2000

 In-cell NMR of proteins overexpressed in yeast, insect cells, mammalian cells

2012 ...

- In-cell EPR of proteins **delivered** in bacteria, X. oocytes

Cellular Structural Biology

- a history

Nucleic Acids

2009

- in-cell NMR: DNA/RNA injected in X. laevis oocytes **2010**
- In-cell EPR: DNA injected in X. laevis oocytes 2012
- In-cell spFRET: DNA in bacterial and mammalian cells

In-cell NMR of nucleic acids

NA delivery via mechanical injection

¹H/ ¹³C /¹⁹F/ [ppm]

Hänsel et al. J Am Chem Soc. 2009

Signals from NA vs. (friendly) cellular background

Topology information from imino pattern

To see the rest - isotopically labeled samples

In-cell NMR: NA degradation (un)expected problem

In-cell NMR: NA degradation (un)expected problem

Chemical stabilization prevents NA degradation

Phosphotioester moiety allows monitoring the NA backbone

Problem of intracellular localization

DNA

RNA

Introduced DNA localizes in nucleus

In-cell NMR: NA leakage from incisions

Resolution limits the analysis of the polymorphs: Cellular lysates

Resolution limits the analysis of the polymorphs: site-specific labeles

GGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTA

a good news: DNA/RNA (if there is any) can be recovered from cells

Summary: in-cell NMR of NA

... NA can be studied inside eukaryotic cells at atomic resolution

- <25 without isotopic labeling (imino H/secondary structure)
- with isotopic labeling up to 70 nt
- degradation can be diminished via chemical modification
- experimental time-window < 3 (leakage, degradation)

Application potential:

- *de novo* structure determination limited (price-wise)
- fold validation YES
- NA sensitivity to environmental factors YES
- •DNA drug interactions YES (Selgado & Mergny)

Interpretation of in-cell NMR data: spectral fingerprinting

Spectral fingerprinting: example

Crude cellular homogenate

Parkinson et al. Nature (2002)

Spectral fingerprinting: example

Crude cellular homogenate

Parkinson et al. Nature (2002)

Benchmarking of in-cell NMR spectra to NA motifs

Does "being in cell" means "being native"?

Unnaturally high concentration of NA are introduced

Injected cells propagate through meiosis

Cells accommodate/tolerate introduced NA

Towards structural biology under native conditions...

In-cell single particle FRET

Fessl et al Nucl Acids Res. 2012

In-cell single particle FRET

E. coli

Interepretation based on rigid arrangement of tags might be biased

Interepretation based on rigid arrangement of tags might be biased

In-cell A-DNA B-DNA

Nucleic Acids

Structural analysis under in vivo conditions

	In-cell NMR	In-cell PELDOR	In-cell spFRET
Disturbance of native environment	t Yes	Yes	No
Cell type	X. laevis egg/oocyte	X. laevis egg/oocyte	<i>E. coli</i> , mammalian cells ^a
Toxicity	Sequence dependent ^h	⁹ Sequence dependent ^b	'No
Subcellular localization	Nucleus/cytosol ^c	Nucleus/cytosol ^c	Nucleus ^d
Tag requirement	No	Yes	Yes
Measurement time span	Hours	< 70 min ^e	Hours
Structural information ^f	Short-range	Long-range	Long-range

SLO-delivered dsDNA in HeLa cells

(R. Hänsel and V. Dötsch – unpublished)

In-cell Raman microscopy (mammalian cells): under development

