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The magnetic moment operator reproducing these matrix elements in the selected four-dimensional
J = 0, 1 subspace can be written down in an elegant way

M = 2S − L
e = −

√
6 i(s†T − T

†s)− 1

2
i(T †× T ) . (2.90)

In this form it is clear that the major potential to generate a magnetic moment have the tran-
sitions between s and T states, the second part is the already mentioned contribution of the J

moment of the triplet that is equivalent to −i(T †× T ) within the J = 0, 1 subspace.

2.3 Electronic hopping and tight-binding approximation

So far we have been dealing with the (rather complex) physics of correlated valence shells of
the individual ions. In this section we are going to activate connections between the ions in the
form of electronic hopping. There will not be any many-body aspects discussed here as our main
goal is just to get the matrix elements enabling a single electron to move from site to site – so-
called tight-binding parameters entering a single-electron hopping Hamiltonian. As a motivating
example we start by considering independent electrons moving in a crystal consisting of identical
atoms arranged in a simple lattice. Their wavefunctions obey the Schrödinger equation



− ℏ
2

2m
∇2 +

∑

R

Vat(r −R)



Ψ = EΨ , (2.91)

where Vat(r − R) is the atomic potential for an atom placed at site R. Summed through the
lattices sites, the atomic potentials generate a periodic crystal potential. In the tight-binding
approximation to the problem (2.91), one assumes that the relevant states are well localized so
that the electron wavefunctions can be constructed as linear combinations of atomic orbitals.
This concept is illustrated by Fig. 16 where we construct a virtual two-dimensional crystal made
out of potential wells of circular symmetry and study the evolution of its energy levels when
reducing the lattice spacing, i.e. bringing the initially isolated atoms closer to each other. At
very large lattice spacing, the spectrum of energy levels has a discrete structure below the top of
the crystal potential, corresponding to the individual bound states of the isolated wells. Above
that threshold energy, delocalized states forming a continuum are found. As we bring the “atoms”
closer and closer, the localized states start to overlap and their interaction produces energy bands
of increasing bandwidth. The higher-energy bound states are forming bands sooner because they
have a larger spatial extent and overlap more easily. This is an analogy of the atomic orbitals in a
crystal - the valence ones form bands while the deep electron levels retain their atomic character.
It is intuitively clear that in the situation with rather well localized states (the electrons are
“tightly bound” to their atoms), the appropriate model Hamiltonian should be of the form

HTB =
∑

nR



εn c
†
nRcnR −

∑

n′∆R

tnn′(∆R) c†n′,R+∆R
cnR



, (2.92)

where the operators c†nR and cnR create/annihilate an electron in the state |φnR〉 corresponding
to orbital n at site R. The rst part of this tight-binding Hamiltonian HTB just counts the
energies of the occupied orbitals [c.f. the energies ε

α
in (2.46)], the second part captures the

hopping of electrons between the orbitals located at R and R + ∆R. The amplitudes of the
hopping processes are the matrix elements of the original crystal Hamiltonian such as that of
Eq. (2.91): tnn′(∆R) = −〈φn′,R+∆R| H |φnR〉. The signs are introduced in such a way that the
hopping parameters t will be mostly positive. For the sake of brevity, we ignore spin that is
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Fig. 16: (left) Wavefunctions of the lowest eigenstates in the potential well described by the 2D potential
Vat(r) = V0 exp(−κr) r0/(r + r0) with V0 = 5 eV, κ = 0.5 nm−1, r0 = 0.5 nm. The indicated levels are
either non-degenerate or two-fold degenerate and they are labeled in analogy with atomic orbitals.
(right) Density of states for a square lattice of the above wells as function of the inverse lattice spacing
1/a. The energy is measured from the lowest eigenstate. For a large spacing (small 1/a) the wells are
practically isolated and the density of states shows discrete peaks at the energies of bound states. Blue
dotted line indicates the average potential level, the red dashed line the top of the potential. The data
to construct this gure were obtained by solving Eq. (2.91) by plane-wave expansion method.

conserved during the hopping and would come as an extra index σ together with


σ
. While the

values of hopping amplitudes are not known yet, one can expect that the nearest-neighbor and
possibly second nearest-neighbor ones will be most important and – in the case of more orbitals
involved – also anticipate their symmetry structure [see Fig. 17(a) and (b) for two examples].

Owing to the periodicity of the lattice, the Hamiltonian can be easily diagonalized by em-
ploying Bloch waves assembled as linear combinations of the atomic orbitals:

|nk〉 = 1√
N

∑

R

eik·R |φnR〉 . (2.93)

Here N denotes the total number of sites in the crystal and normalizes |nk〉 to unity when the
overlaps of orbitals at dierent sites are negligible. By inserting the consistently transformed
electron operators cnR = N−1/2



k
eik·Rcnk into HTB, it acquires the form with separated con-

tributions of the individual Bloch vectors k

HTB =
∑

k

∑

nn′



εnδnn′ −
∑

∆R

tnn′(∆R) e−ik·∆R



c
†
n′k

cnk . (2.94)

For each k, it remains to diagonalize a matrix whose dimension is equal to the number of orbitals
involved (no diagonalization is thus needed in case of one relevant orbital). For the two examples
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Fig. 17: (a) Hopping processes included in the simplest tight-binding approximation for the bands
derived from s “orbitals” of Fig. 16 in a square lattice. Nearest-neighbor and next nearest-neighbor
hopping amplitudes t and t′ are indicated. (b) Hopping processes involving the p orbitals on a square
lattice. The symmetry of these states makes certain hopping amplitudes to vanish, the non-zero ones
depend on the relative orientation of the orbitals (tσ and tπ). (c) Band structure obtained for the
setup of Fig. 16 and the value a = 2 nm of the lattice parameter. The weakly dispersing bands derived
from the s1 and p1 levels are shown in detail on the left. The green dashed lines are ts by the
corresponding nearest-neighbor tight-binding dispersion relations. The band structure is plotted along
the conventional path involving Γ = (0, 0), X = (π/a, 0) and M = (π/a,π/a) points in the Brillouin
zone. (d) Band structure for a = 1nm where even the lowest level already shows a signicant dispersion.
Its prole seems to be just a scaled version of that from panel (c), demonstrating the applicability of
the tight-binding scheme.

in Fig. 17(a),(b) we get

HTB =
∑

k



εs − 2t(cos kxa+ cos kya)− 4t′ cos kxa cos kya


c
†
k
c
k

(2.95)

and

HTB =
∑

k



c
†
pxk

c
†
pyk







εp − 2t
σ
cos kxa− 2t

π
cos kya 0

0 εp − 2t
π
cos kxa− 2t

σ
cos kya









cpxk

cpyk





(2.96)
giving directly the dispersion relations of electrons. In the latter case, nonzero o-diagonal
elements would be generated by next nearest-neighbor hopping, nearest-neighbor pairs of px
and py orbitals are not connected due to symmetry reasons. The band structures obtained
numerically by solving the full problem (2.91) are presented in Fig. 17 and contrasted to those
resulting in nearest-neighbor tight-binding approximation. A remarkable agreement is obtained
when choosing the proper values of the few parameters (εs and t or εp and t

σ
, t

π
), in particular

for the s band derived from the most localized bound state.
As we have just seen, the tight-binding approximation is a useful tool well capturing the

dispersion of the bands derived from localized states. Its success relies on a limited range of


