

Central European Institute of Technology BRNO | CZECH REPUBLIC

Transmission Electron Microscopy

Sec.

Design

Fall 2023

Ondrej L. Shanel, Ph.D.

CPO elements overview

TEM Principle – Functional Decomposition

TEM Principle – Design Schematic

- TEM mode Image of an illuminated sample is magnified onto a camera
- STEM Mode Focused Beam scanning over the sample \rightarrow processed signal creates

TEM Standard Parameters

Parameter	Value
Accelerating voltage [kV]	30-300
Beam current [nA]	0.01-100
Chamber Vacuum	1e-5 – 1e-8
Resolution [nm] Cs corrected/uncorr	~0.05/~0.1
Sample size [mm3]	3.05^2 * 1E-5 - 1E-4

TEM and SEM comparison

Parameter	SEM Value
Accelerating voltage [kV]	0.5-30
Beam current [nA]	0.01-100
Chamber Vacuum	1e-3 – 1e-6
Resolution [nm]	~0.5
Sample size [mm3]	90x90x20
	ParameterAccelerating voltage [kV]Beam current [nA]Chamber VacuumResolution [nm]Sample size [mm3]

SEM Schematic

TEM modes

TEM – Přenosová funkce kontrastu - intenzita

TEM imaging - CTF

TEM imaging – Defocus impact

STEM - Spot size calculation

• First order calculation

$$d_{50} = \sqrt{(0.43C_s\alpha^3)^2 + (C_c\alpha H)^2} + (\frac{\sqrt{I}}{\pi\alpha\sqrt{BrU}})^2 + (\mathsf{M} \ d_0)^2 + (\frac{0.63\lambda}{\alpha})^2,$$

where α – is beam convergent semiangel, Cs – spherical aberration, Cc – chromatical aberration, H – stability factor, I - beam current, λ – electron wavelenght, Br – e-source brightness, U - acceleration voltage, M – demagnification of source, d_0 - original source size

Spot size calculation

Spot size dependancy on convergent semiangle of beam

 $HT = 200kV, Cs=1.1mm, Cc=1.6mm, \Delta E = 0.8eV, I = 20pA, H = 4e-6$

Electron sources

• Using Thermionic, FEG and C-FEG sources

E-source	Thermoemission		Schottky FEG	C-FEG
Cathode	W	LaB6/CeB6	W/ZrO	Cold FEG
Work function[eV]	4.5	2.4	2.7	4.5
Operating Temp [K]	2700	1700	1750	300
Virtual source size[µm]	50	10	~ 0.015	~ 0.005
Energy spread [eV]	2-3	1.5	0.6-0.9	0.2-0.3
Operating vacuum [Pa]	10-3	10 ⁻⁴ -10 ⁻⁵	10 ⁻⁶ -10 ⁻⁷	10 ⁻⁸ -10 ⁻⁹
Max beam current [µA]	1- 3	1-3	0.3	0.1
Lifetime [h]	40-100	500-1000	>2000	>2000
Red. brightness [A/m ² sr·eV]	(1-3)*104	(3-10)*10 ⁵	(0.2-2)*10 ⁸	(0.5-5)*10 ⁸

Accelerators/Emission Chamber

Using Signle- and Two-aperture Electrostatic lenses with Multi Anodes design

δ

Deflectors

• Function

- Centering optical elements Gun, Beam, Image
- Image/Diffraction Shift, Tilt Beam and Image
- Gun optimization Gun
- Scanning/Descanning Beam/Image

Magnetic

- Gun deflection coils centering e-beam from Acc to Condensor lenses
- Beam deflection coils
 - DC centering e-beam from Condensor lenses to Objective lens
 - AC Scanning over sample
- Image deflection coils
 - DC centering e-beam from Condensor lenses to Objective lens
 - AC Scanning over sample
- Driven by Optical Boards
 - Signal to coils AC (trending to DC directly)
 - Processing DC
 - Noise of Optical Boards translates to image instability or resolution lost (H)

Deflectors – Beam Tilt and Beam Shift – Pivot Points

Combinatin of two deflection coils pair to create independent beam Tilt and Shift

Lenses

- Function
 - Condensor 2 or 3 condenser system, Make a sample illumination (TEM/STEM)
 - Projector 4 lenses system Magnify a sample image or diffraction, providing non-rotating imaging
- Magnetic
 - Condensor, Objective (immerse) and projector lenses
 - Water cooling
- Electrostatic
 - Accelerator only
- Driven by Optical Boards
 - Signal to coils DC

TEC

- Feedback loops for coils stability
- Noise of Optical Boards translates to image instability or resolution lost (H)

Stigmators

Magnetic

- Objective or Gun stigmators
- Correcting 2-fold and 3-fold astigmatism
- Driven by Optical Boards
 - Signal to coils AC (trending to DC directly)
 - Processing DC
 - Noise of Optical Boards translates to image instability or resolution lost (H)

Correctors

- Spherical Correctors Image or Probe
 - Hexapole based CEOS supplier → Thermo Fisher Scientific, Jeol, Hitachi
 - Octupole based Nion
- Chromatic Only Image
 - Octupole based CEOS Thermo Fisher Scientific, Jeol
- Driven by Optical Boards
 - Most stable boards (<0.1 ppm)
 - AC drivers
 - Processing DC

TEC

Noise of Optical Boards translates to image instability or resolution lost (H)

Detectors

- Projection chamber area
 - TEM Cameras CMOS, Hybrid, CCD
 - STEM HAADF, BF, DF, Pixelized
- Sample area
 - EDS
 - CL
 - SE SDD based
 - BSE SDD based
- Driven by Optical Boards
 - Signals AC/DC (trending to DC directly)
 - Processing DC

EITEC

- Noise of Optical Boards translates to image instability
- Sync with Scanning Deflection coils

Infrastructure I

• Vacuum

Levels

- Chamber 1e-4Pa
- Accelerator 1e-4 Thermionic, 1e-9 CFEG
- Pumps
 - TMP, IGP, NEG, Scroll, Diffusion, Rotary
- Valve
 - Using to create separate vacuum volumes
- Linening Tubes
 - Using to keep vacuum for electron trajectory
 - Non-magnetic materials (glass, stainless steel)

Stage

- 4 Axis stage, 5th axis done via holders
- Resolution 1-10nm
- Drift 0.5-1 nm/min

EITEC

• Ultrasonic, Piezo design

Infrastructure II

Chamber

- Vacuum level 1e-3 1e-6
- Support column, stage, detectors
- Shielding of sample area from any disturbance (EMI)

Frame, Dumping, Enclosure

- Supporting Chamber and the whole infrastructure
- Dumping (typically 1/10 of required resolution)
 - Rubber pods
 - Air dumpers
 - Active dumping
- Sound and EMI enclosure suppressing EMI and sound influence

Electronics - Boards

Optical Boards

- Signals AC/DC (trending to DC directly)
- Processing DC
- Noise of Optical Boards translates to image instability
- Lens
 - Typical currents 1-12A or 10-1000V
 - Stability 0.5-10 ppm
- Deflectors/Stigmators
 - Typical currents 10-100mA or 1-10V
 - Stability 1-10 ppm
- Correctors
 - Typical currents 10-1000mA or 1-100V
 - Stability <0.1 ppm

Detectors Boards

- Signals AC/DC (trending to DC directly)
- Processing DC
- Depending on specific Detectors needs

Infrastructure Boards

Vacuum pump, vavles

SW

TEM examples

Name/Brand	LVEM25E/ Delong	UltraSTEM 200/Nion	CryoArm 300 II /Jeol	Tensor/Tescan	HF5000/Hitachi	Krios/TFS
Resolution [nm/kV]	<1	<0.08/200	/300</td <td>0.28/100</td> <td><0.078/200</td> <td><0.12/300</td>	0.28/100	<0.078/200	<0.12/300
Operating Voltage [kV]	15-25	20?-200	300	100	30-200	300
Lens type	Magnetic/Coils+M agnets	Magnetic	Magnetic	Magnetic	Magnetic	Magnetic
Electron source	CFEG	CFEG	CFEG	SFEG	CFEG	XFEG/CFEG

To be continued...

Imaging theory...

