Lecture 5

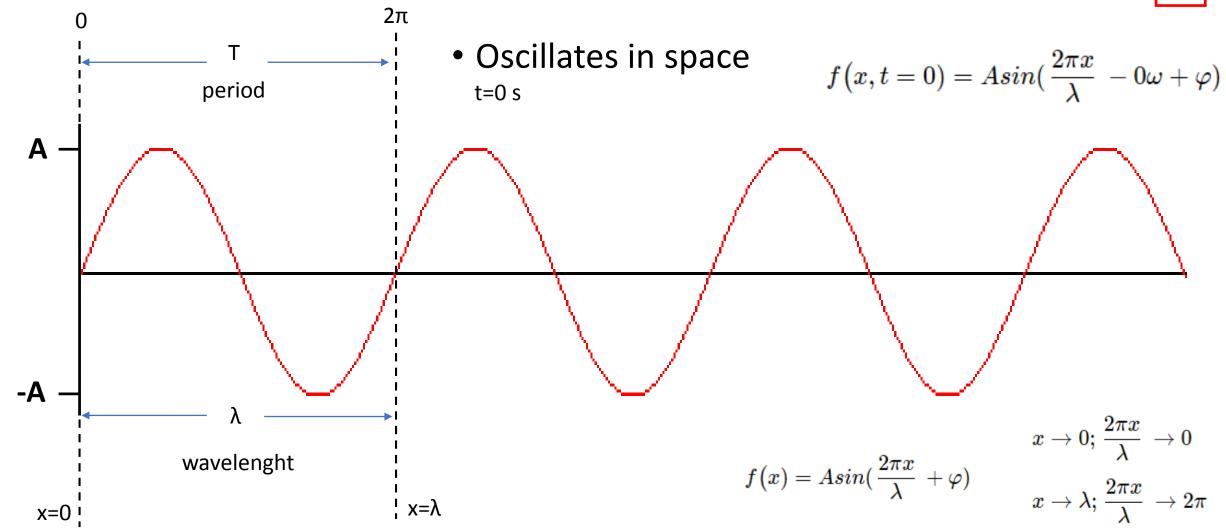
Cryo-electron microscopy

Spatial waves, Fourier transform, image formation contrast transfer function

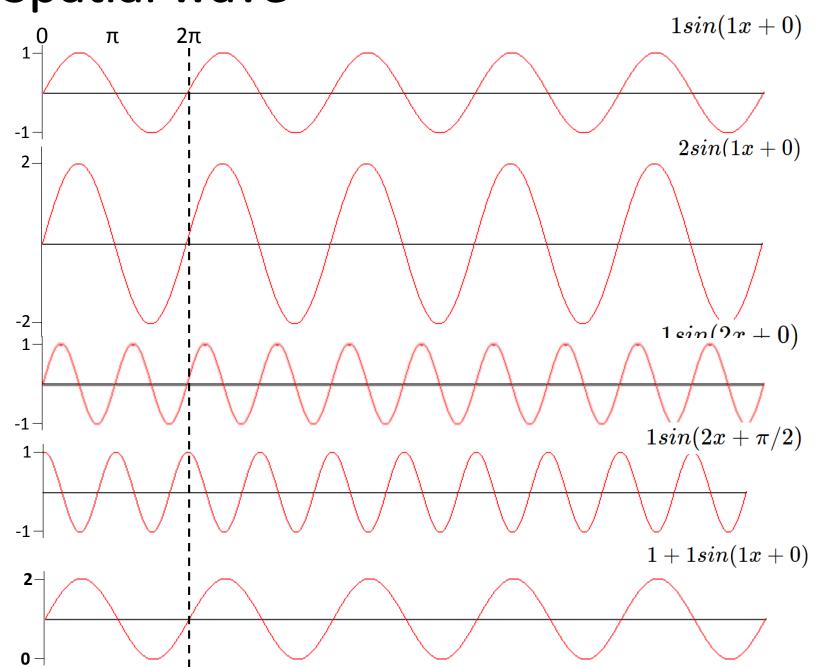
Tibor Füzik

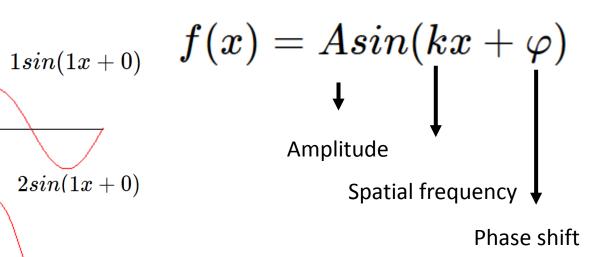
Spatial wave

$$k = rac{\omega}{v} = rac{2\pi f}{v} = rac{2\pi}{\lambda}$$



Spatial wave

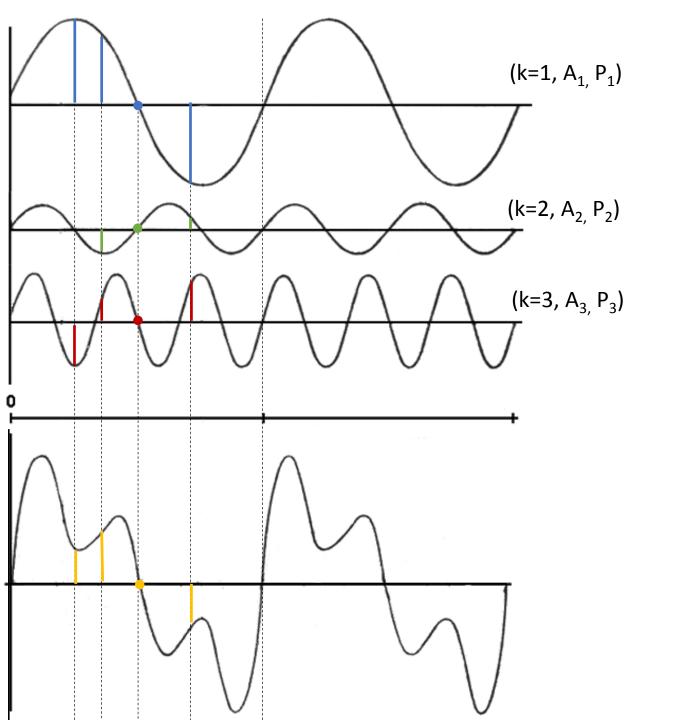




$$k=2; k=rac{2\pi}{\lambda}; \lambda=rac{2\pi}{2}=\pi$$

$$f(x) = A_\circ + Asin(kx + arphi)$$

http://www.maxmcarter.com/sinewave/generate sinewave.php

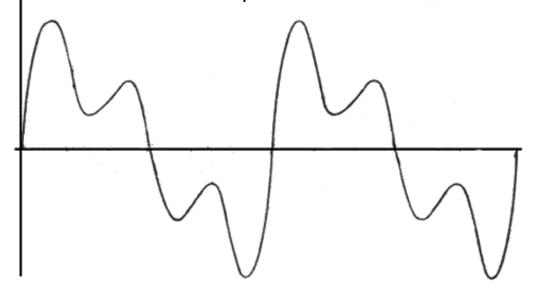


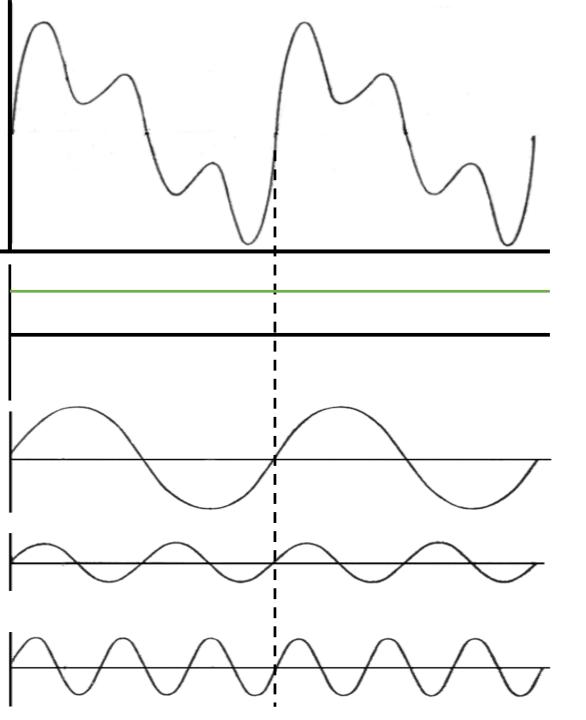
Adding sine waves

Every single complex wave we can construct by addition of series of single waves

Can we do the opposite way?

What sine waves this periodical function consist of?





Fourier decomposition

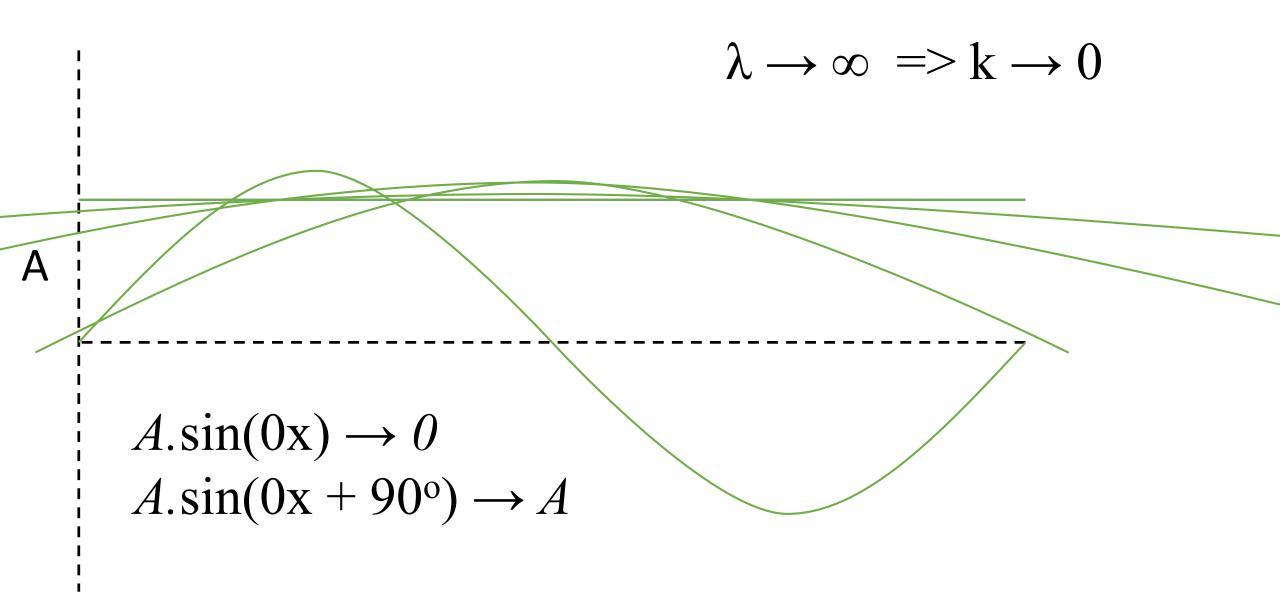
DC component (A_o)

Fundamental frequency (k=1, A_1 , P_1)

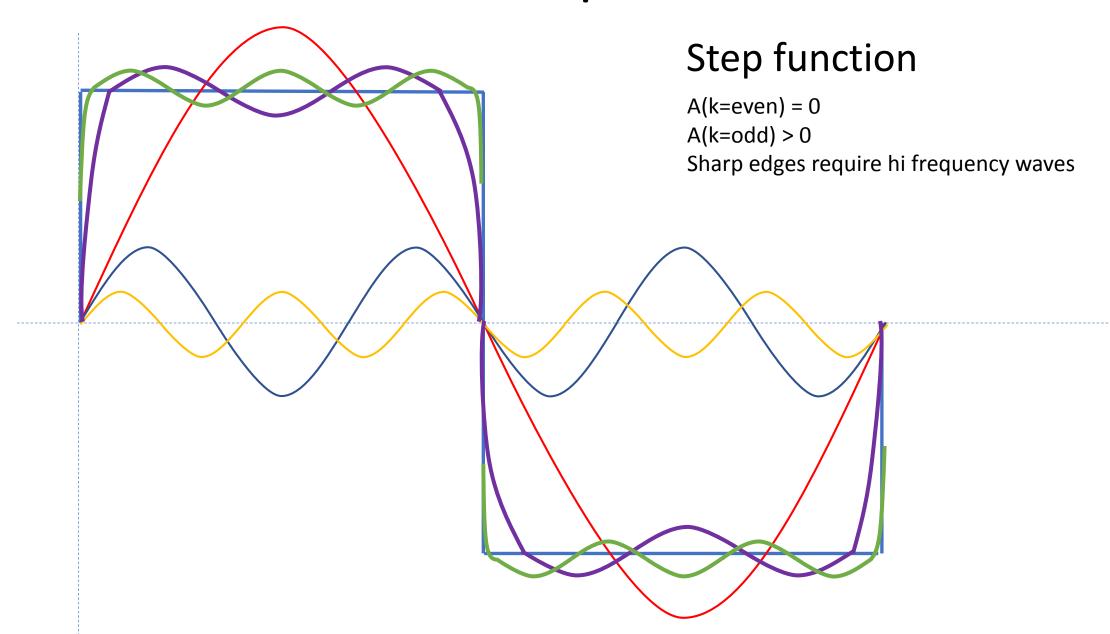
1st harmonics (k=2, A₂, P₂)

2nd harmonics (k=3, A₃, P₃)

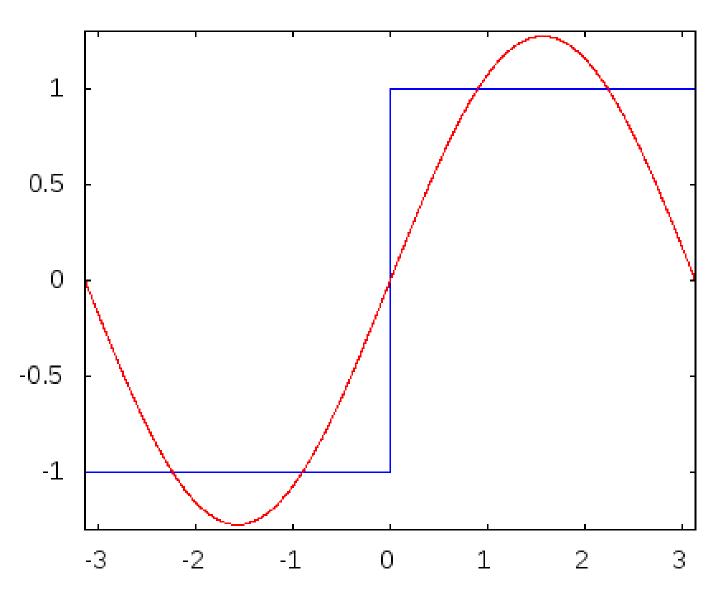
A constant function



Square wave – Fourier decomposition



Step function



Fourier decomposition

Fourier transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

Inverse Fourier transform

$$f(t)=rac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omega$$

Jean-Baptiste Joseph Fourier

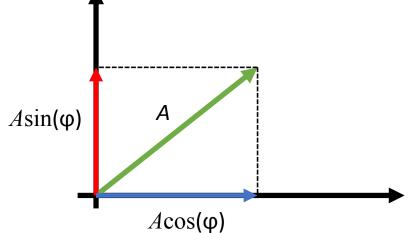
Every periodical function can be decomposed into sum of infinite number of sine waves

$$\omega = 2\pi f$$
 $Ae^{ilpha} = Acos(lpha) + iAsin(lpha)$

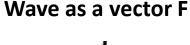
Fourier decomposition of spatial waves

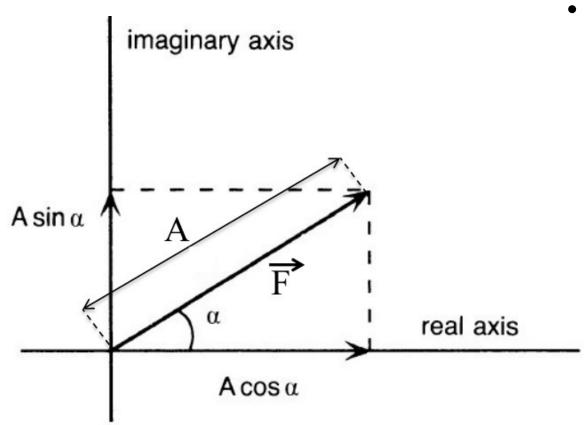
$$f(x) = rac{A_0}{2} + \sum_{m=1}^{\infty} A_m cosig(rac{2\pi mx}{\lambda}ig) + \sum_{m=1}^{\infty} B_m sinig(rac{2\pi mx}{\lambda}ig)$$

$$A_m = rac{2}{\lambda} \int_0^\lambda f(x) cosig(rac{2\pi mx}{\lambda}ig) dx \hspace{1cm} B_m = rac{2}{\lambda} \int_0^\lambda f(x) sinig(rac{2\pi mx}{\lambda}ig) dx$$



How can we store Fourier transform





$$ec{F} = Acos(lpha) + iAsin(lpha)$$

- Need to store waves (parameters of waves)
- Reciprocal space
 - series of wave functions
 - series of wave vectors

2 ways of wave vector representation

- as amplitudes and corresponding phases
- as complex numbers

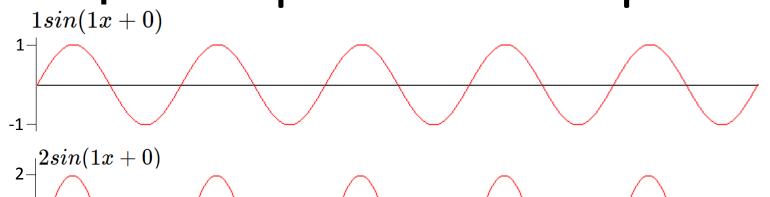
Complex Numbers

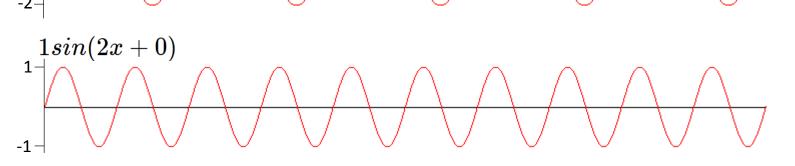
$$(a+bi)+(c+di)=(a+c)(b+d)i$$

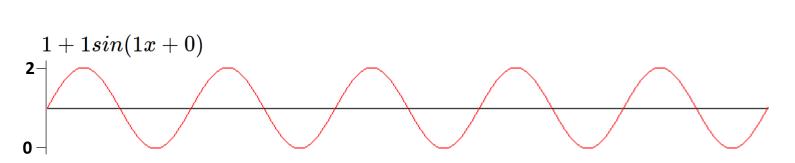
Multiplication

$$(a+bi)(c+di) = (ac-bd) + (ad+cd)i$$

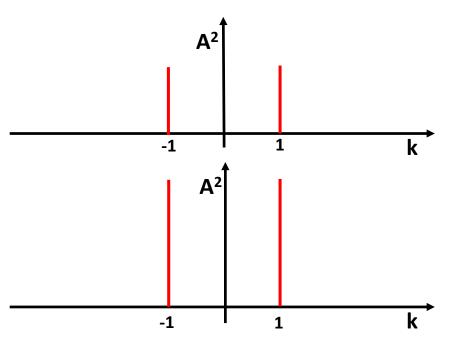
Reciprocal space — Power spectra $\frac{1sin(1x+0)}{1}$

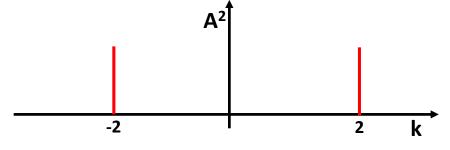


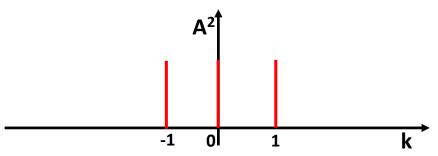


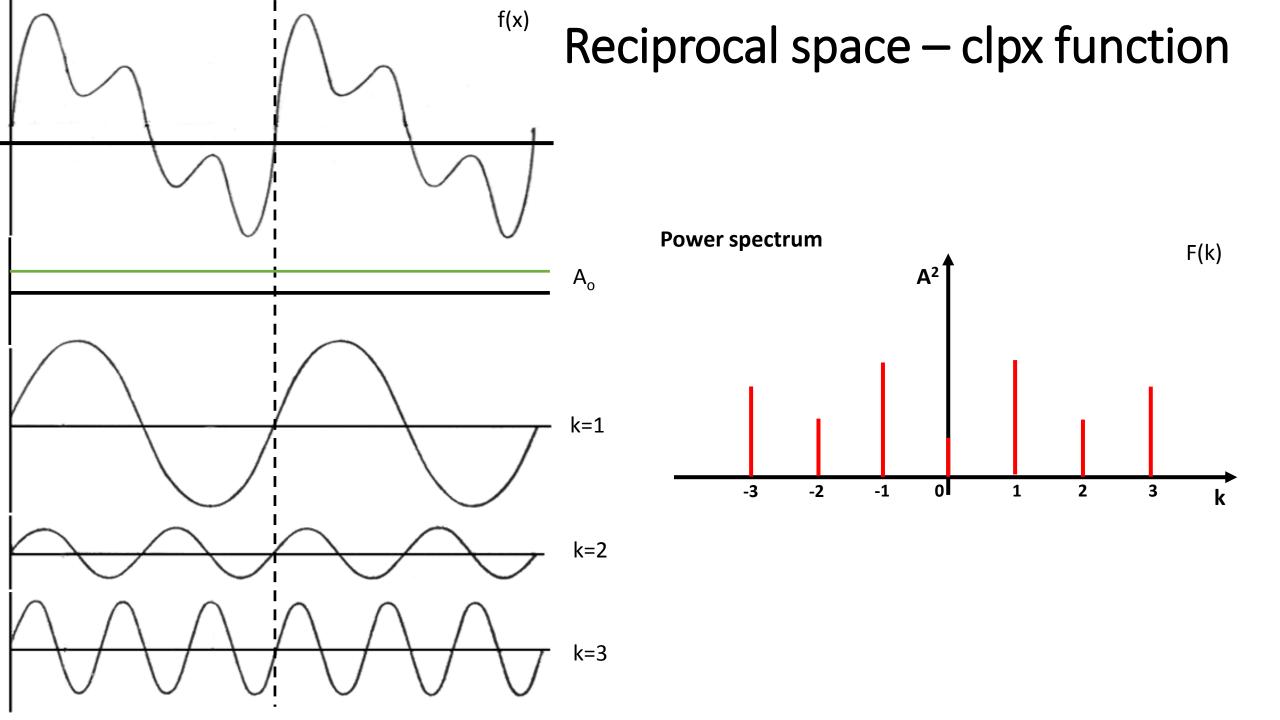


Power spectra

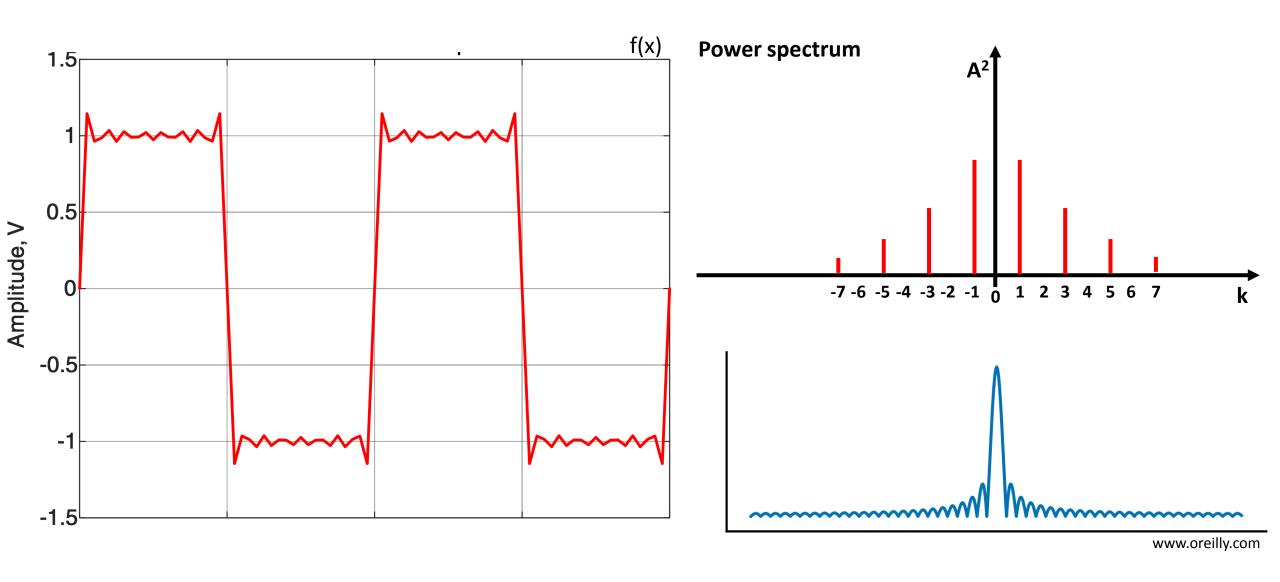




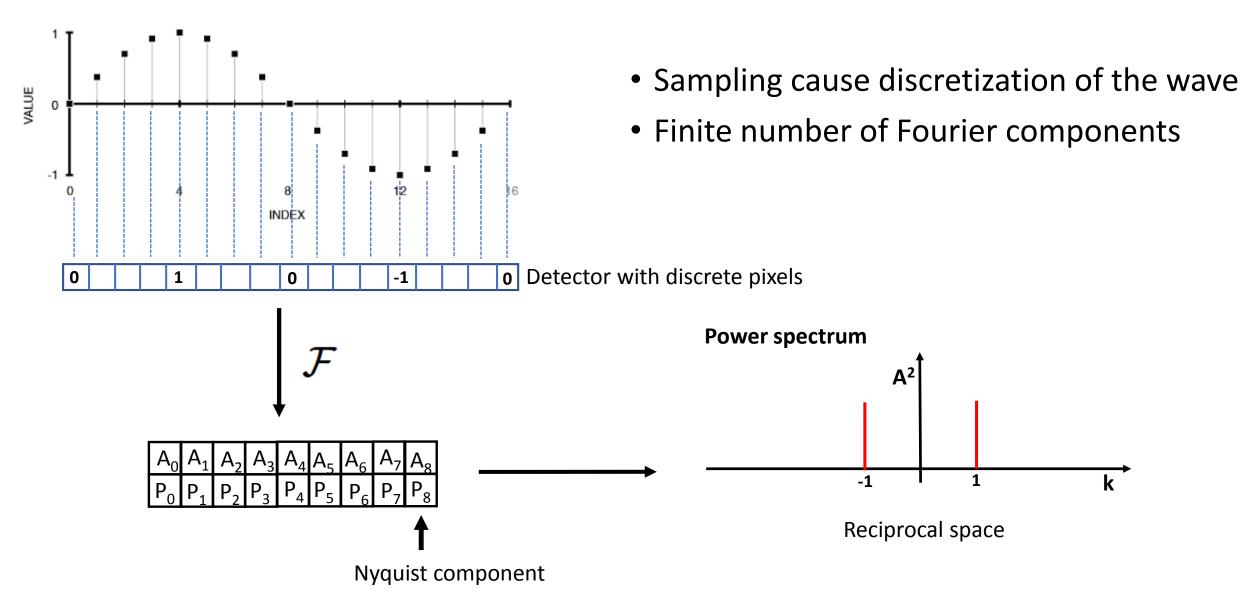


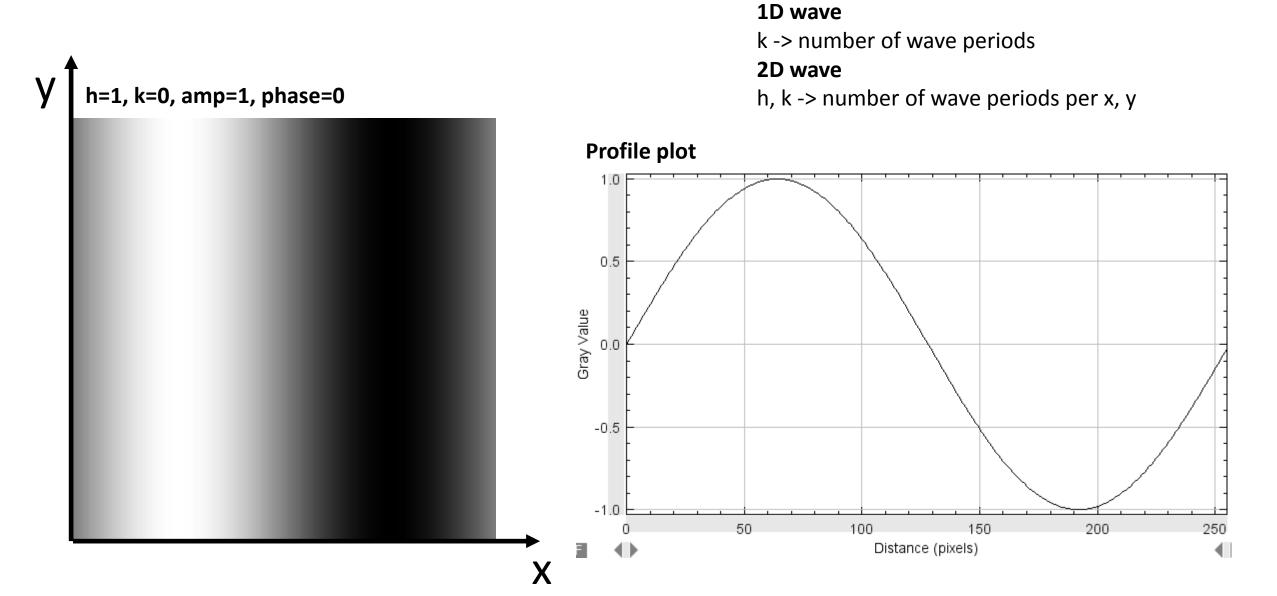


Reciprocal space – step function



Fourier transform of 1D discrete waves



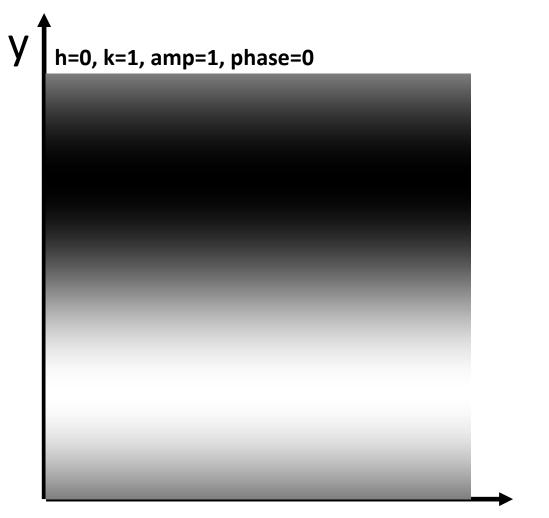


1D wave

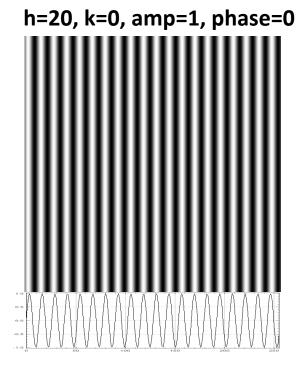
k -> number of wave periods

2D wave

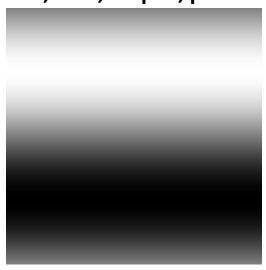
h, k -> number of wave periods per x, y

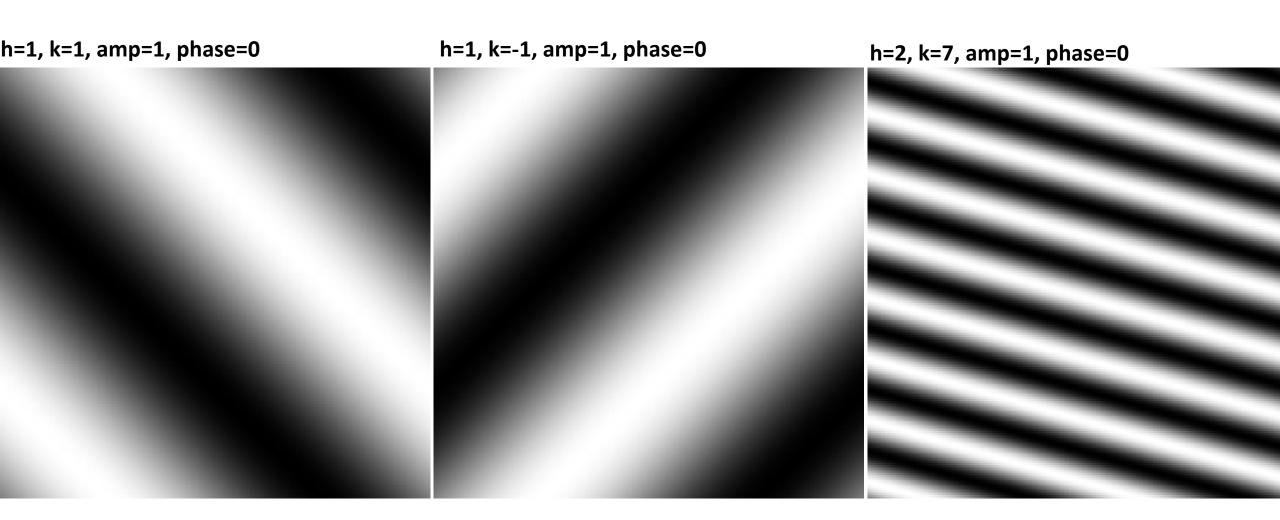


h=1, k=0, amp=1, phase=90

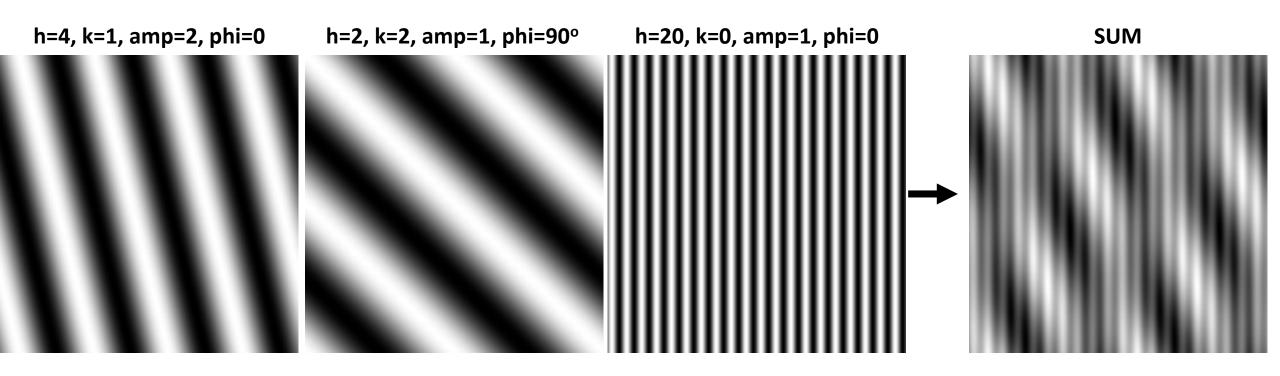


h=0, k=-1, amp=1, phase=90





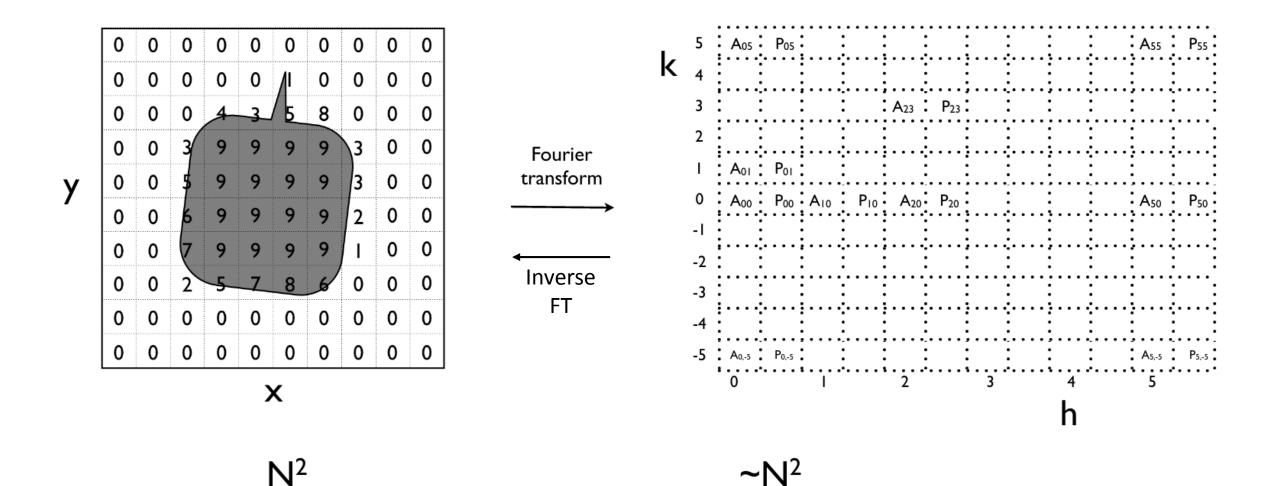
Combining 2D waves



Fourier transform of 2D waves

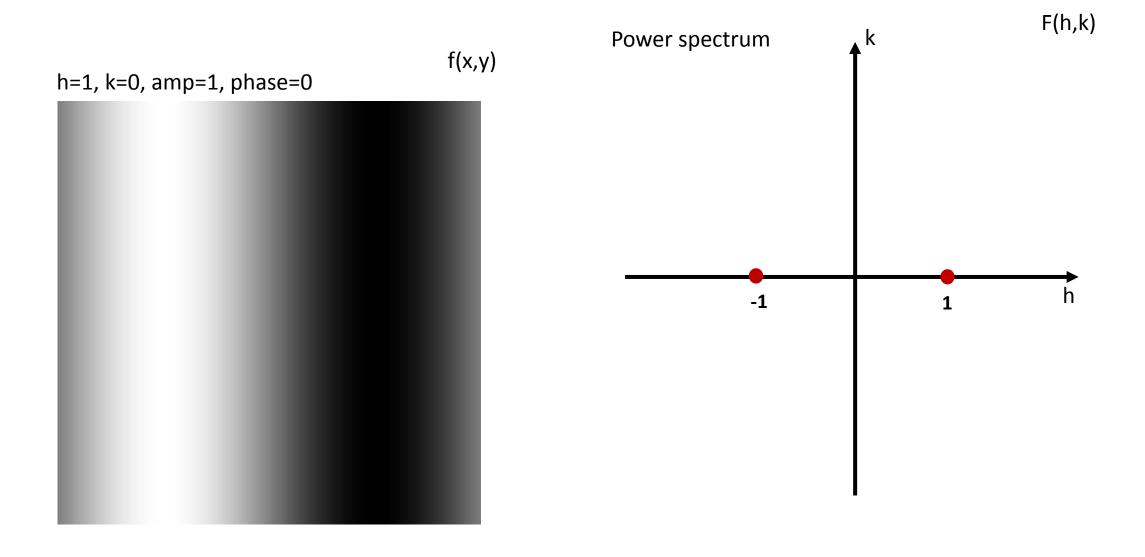
numbers

10x10 (x,y,z) samples

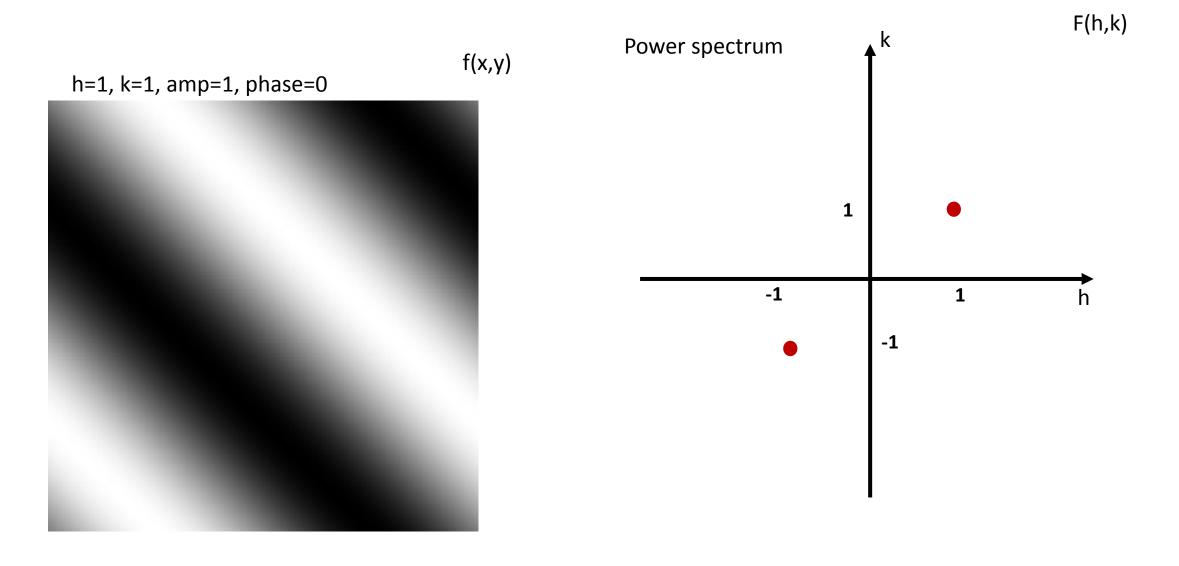


numbers

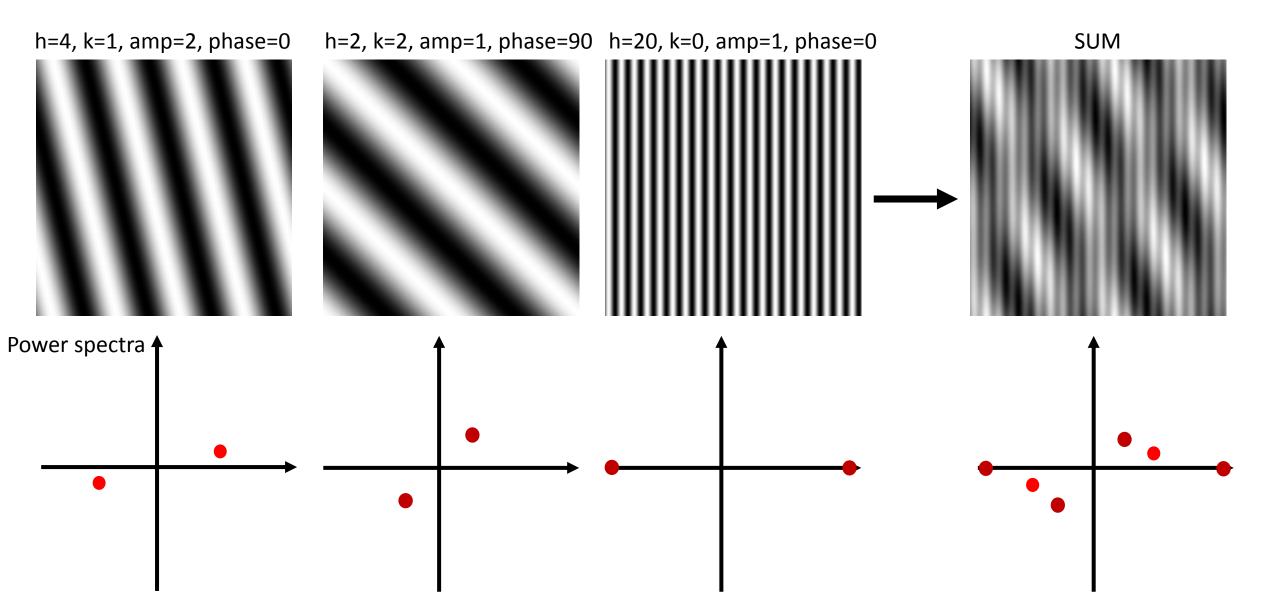
2D Fourier transform of simple 2D waves



2D Fourier transform of simple 2D waves



2D Fourier transform of simple 2D waves



1D wave

k -> number of wave periods

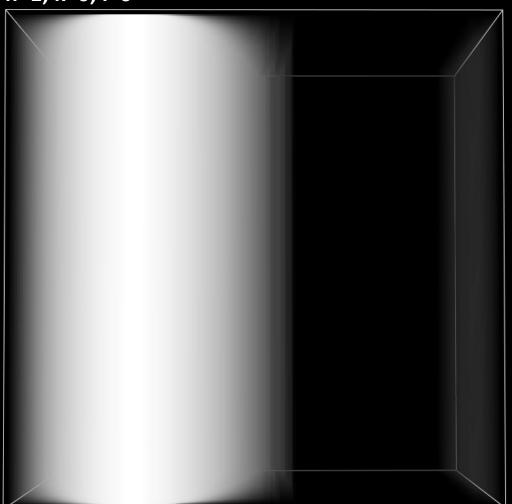
2D wave

h, k -> number of wave periods per x, y

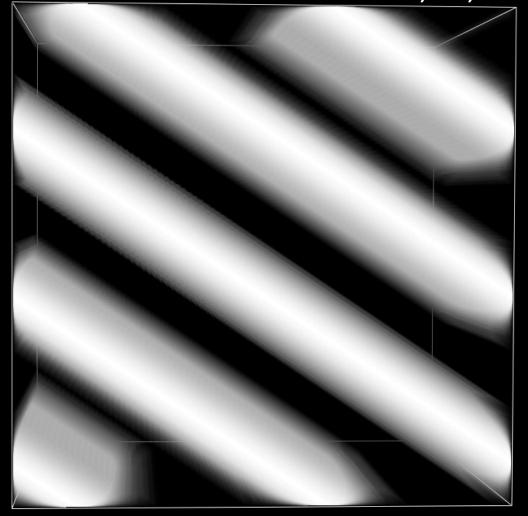
3D wave

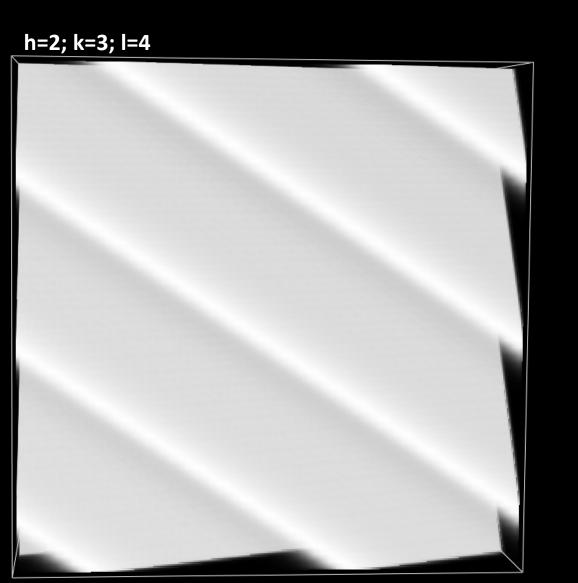
h, k, l -> number of wave periods per x, y, z

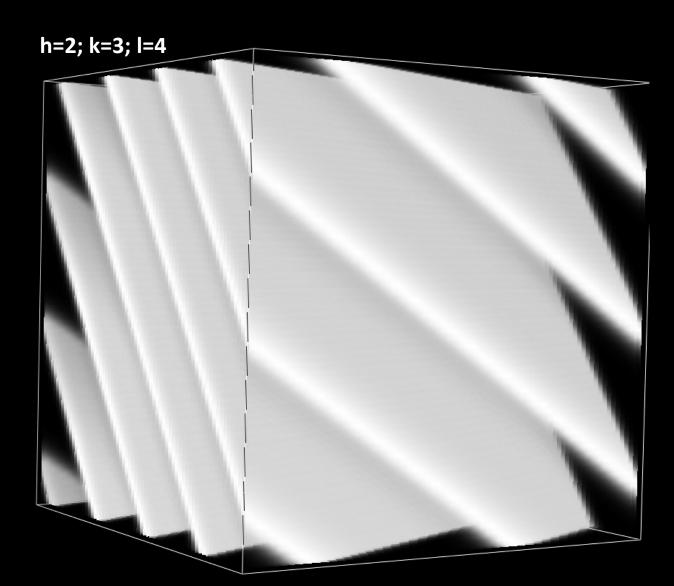
h=1; k=0; l=0



h=2; k=3; l=0

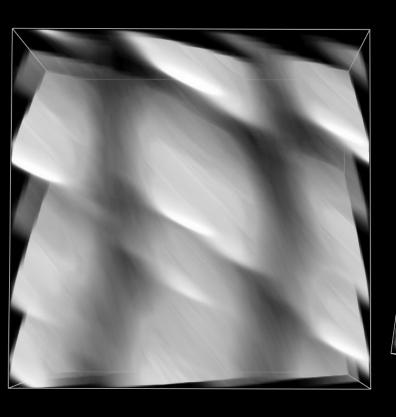


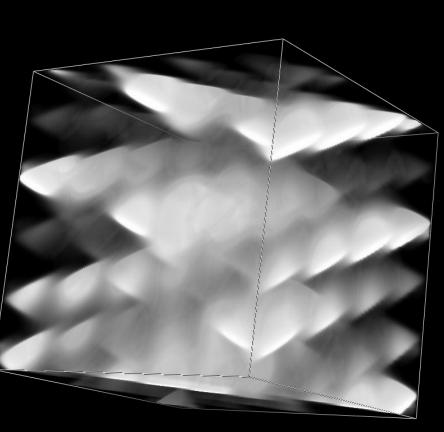


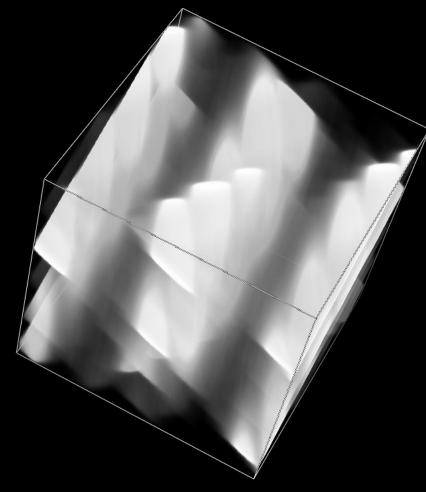


Sum of 3D waves

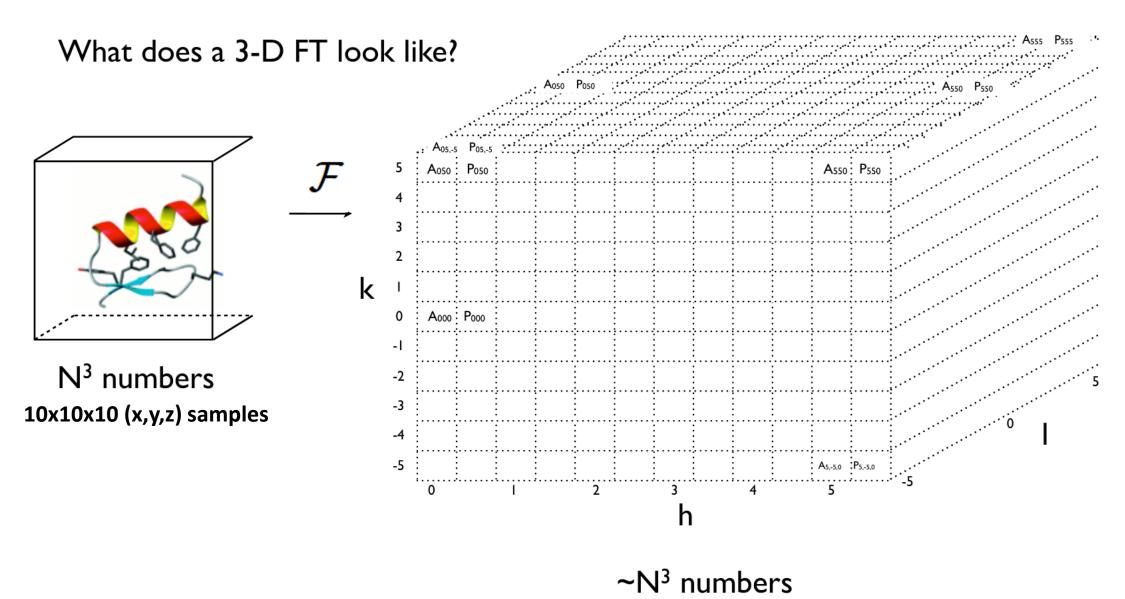
Sum of multiple (3) 3D waves





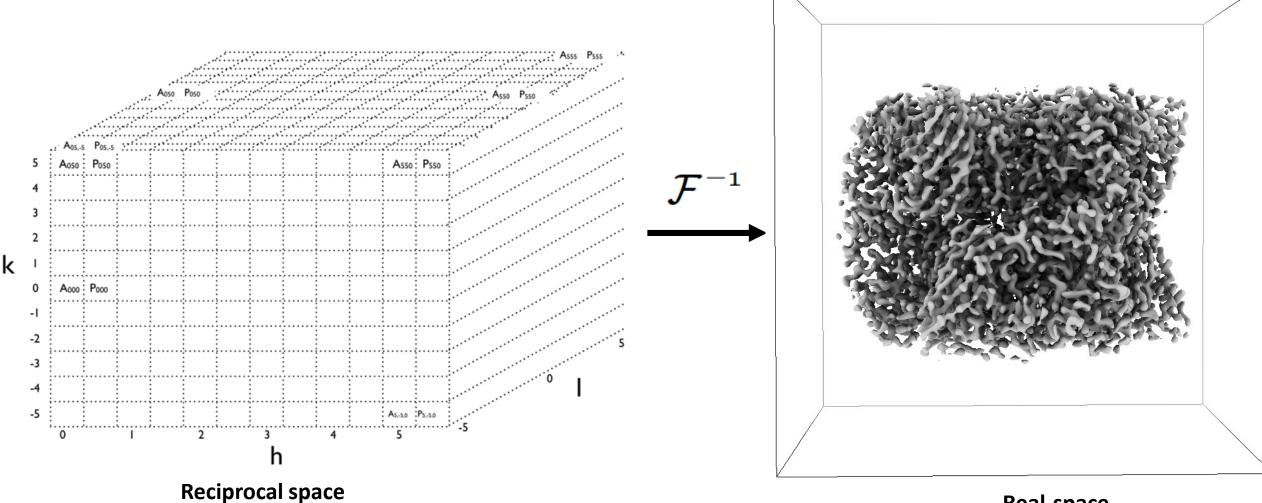


3D Fourier transform



Grant Jensen

3D reconstruction



Real-space

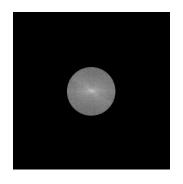
$$\rho(x \ y \ z) = \frac{1}{V} \sum_{l} \sum_{l} \sum_{l} \left| F(h \ k \ l) \right| \exp\left[-2\pi i \frac{(hx + ky + lz)}{(hx + ky + lz)} + i \frac{\alpha(h \ k \ l)}{(hx + ky + lz)} \right]$$

from Lecture 3

Good to know about reciprocal space

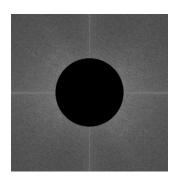
- Every single point in reciprocal space affects all the points in realspace
- Every single point in real-space affects all the points in reciprocal space
- More far from the center of the power spectrum higher the spatial frequency
- While only amplitudes are represented in the power spectrum, the underlying phases are equally important

Letting the low freq. pass

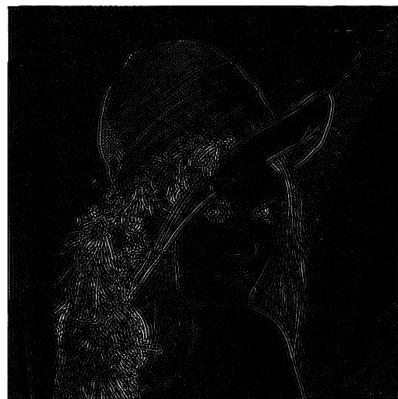


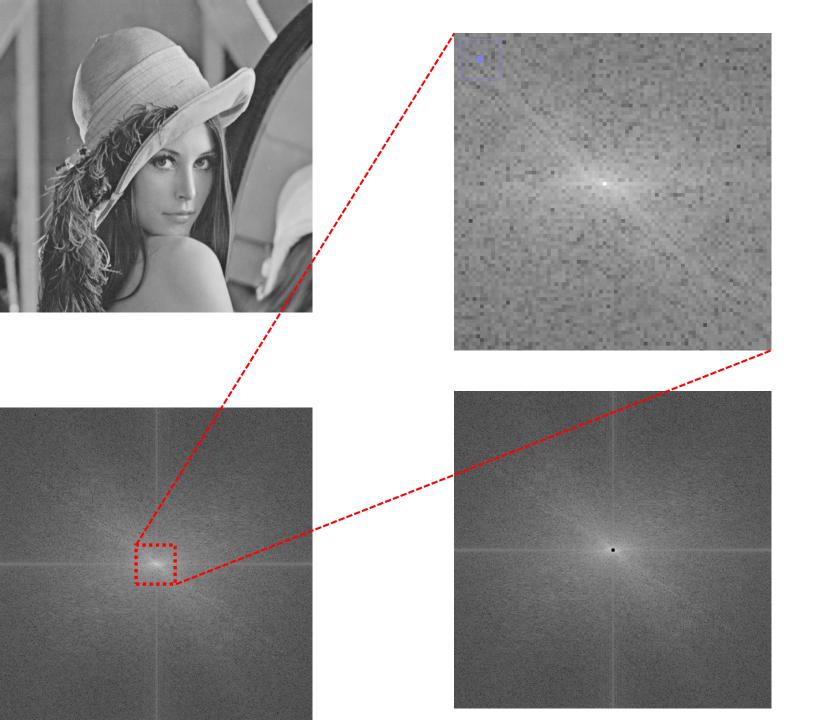
Low-pass filter

Letting the hi freq. pass



Hi-pass filter

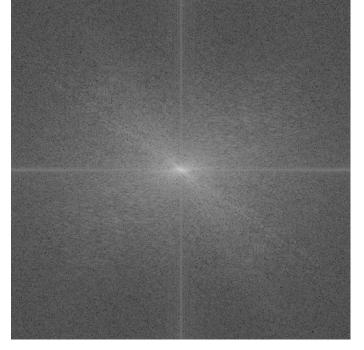




DC component

DC component removed

Real-space



Reciprocal-space

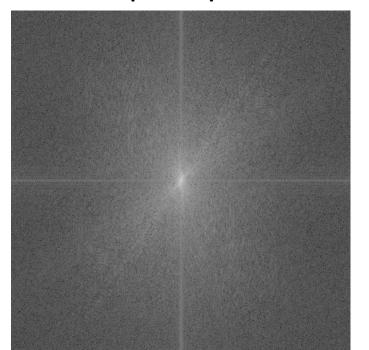
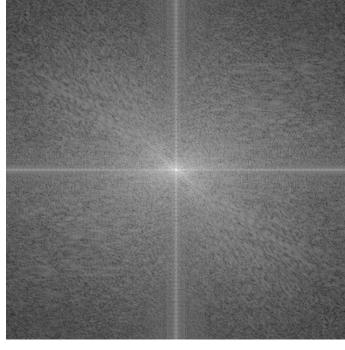
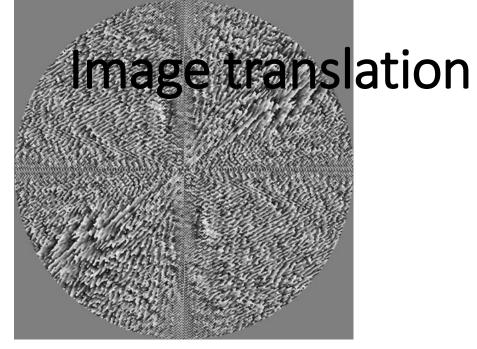


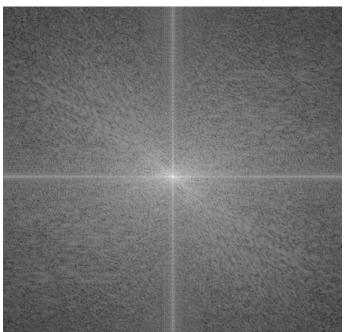
Image rotation

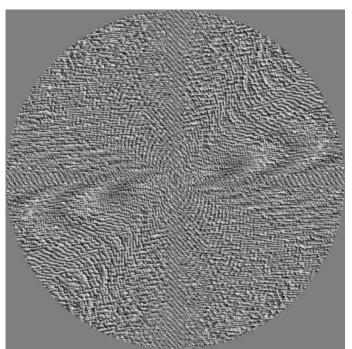




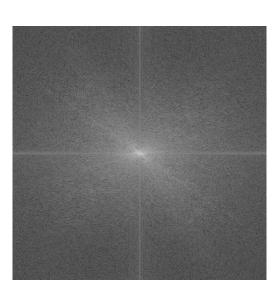
Reciprocal-space

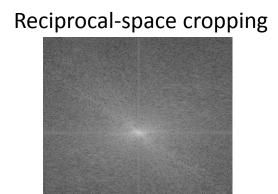
Reciprocal-space phases

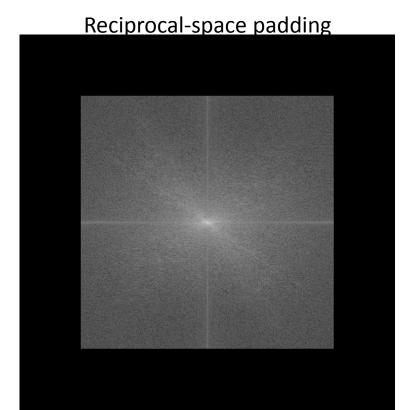




Fourier space cropping, padding







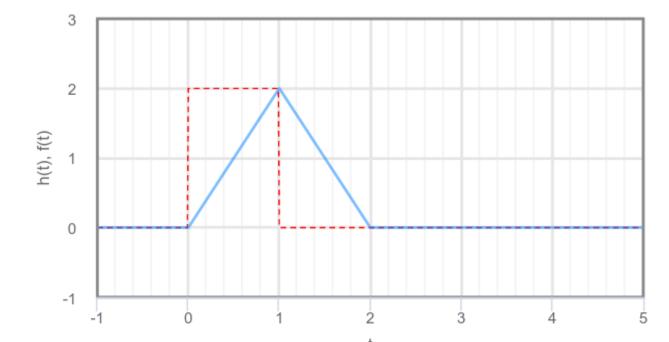
Downscaling (~lowpass)

Upscaling (without adding information)

Convolution

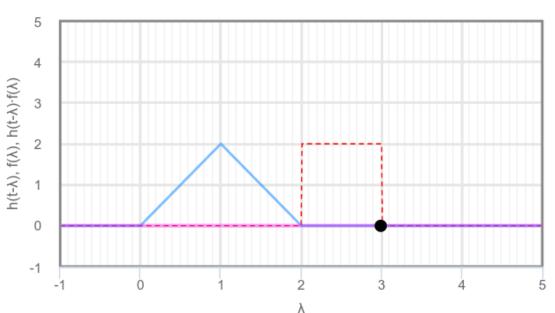
- Convolution is a mathematical operation on two functions (f and g) that produces a third function (f*h) that expresses how the shape of one is modified by the other.
- f*h ~ "pass the function f over the function g take the area under"
- Convolution is commutative operation

$$g(i) = f \otimes h = \int_{-\infty}^{\infty} f(x)h(i-x)dx$$



--- h(t) --- f(t)

$h(t-\lambda)$, $f(\lambda)$, $h(t-\lambda)\cdot f(\lambda)$ vs λ

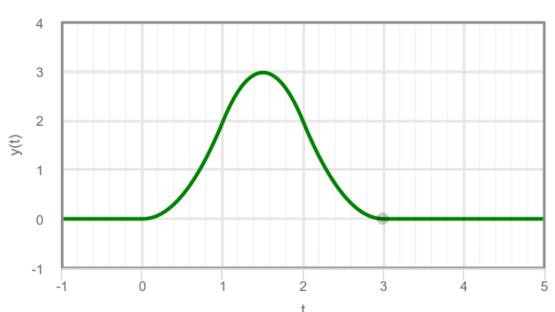


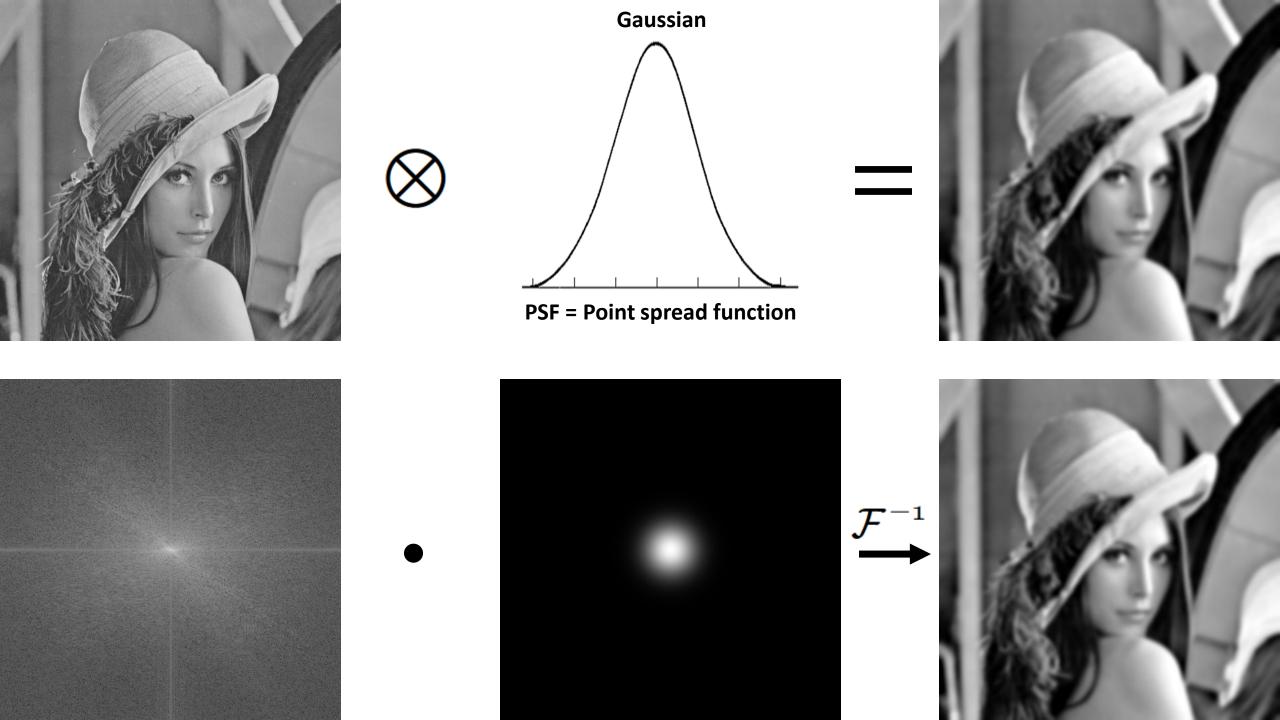
Convolution

$$g(i) = f \otimes h = \int_{-\infty}^{\infty} f(x)h(i-x)dx$$

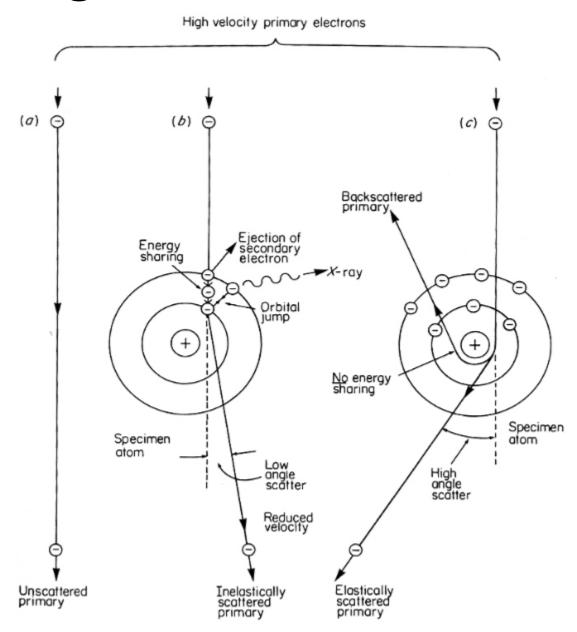
Convolution theorem

$$g=f\otimes h$$
 $\mathcal{F}\{g\}=\mathcal{F}\{f\}ullet\mathcal{F}\{h\}$ $g=f\otimes h=\mathcal{F}^{-1}\{\mathcal{F}\{f\}ullet\mathcal{F}\{h\}\}$





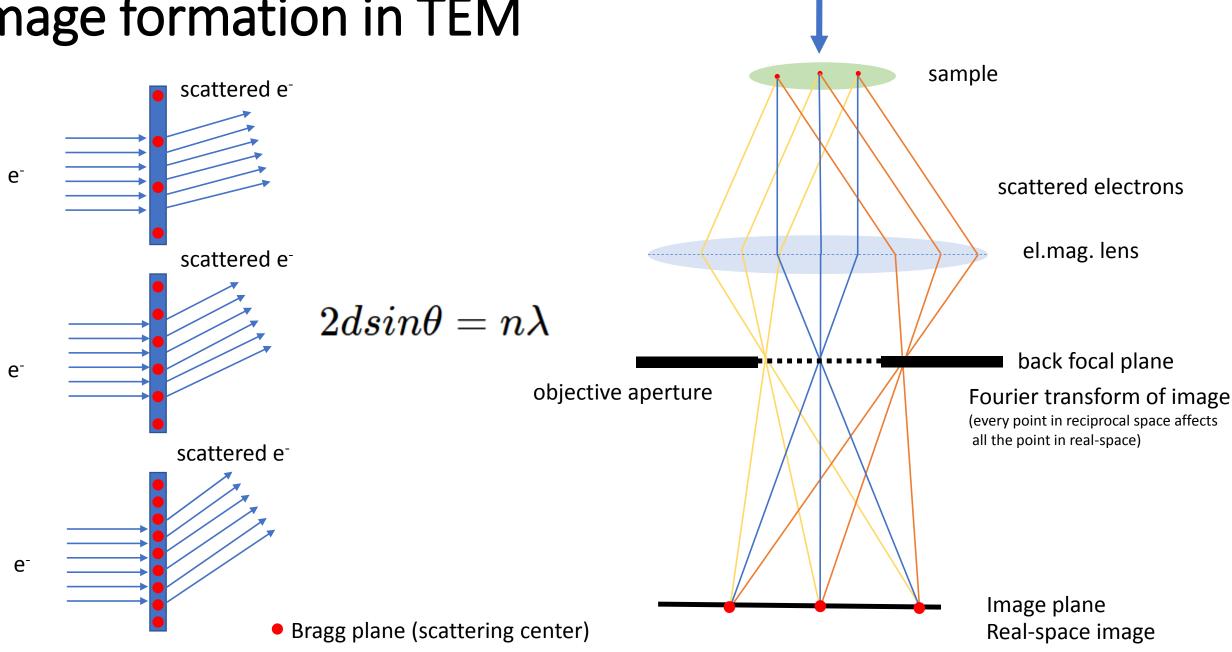
Electron scattering

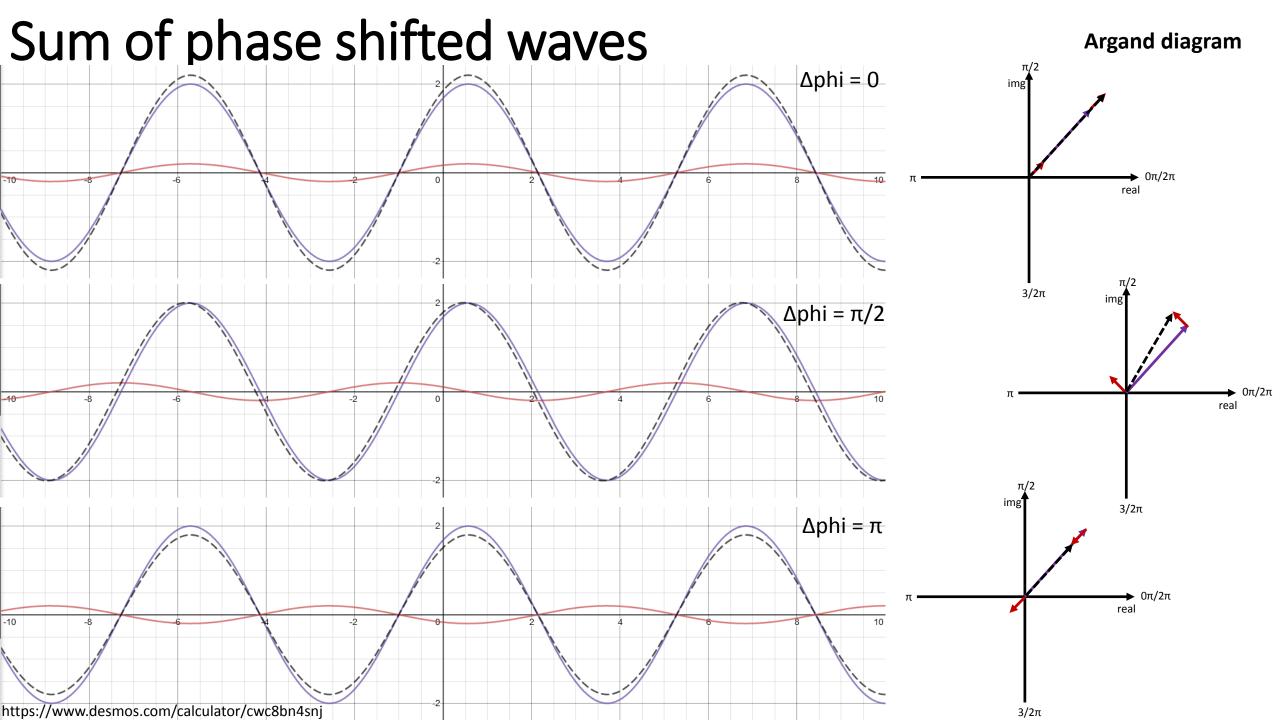


Electron scattering – TEM image formation

Braggs law X-ray scattered X-ray scattered e

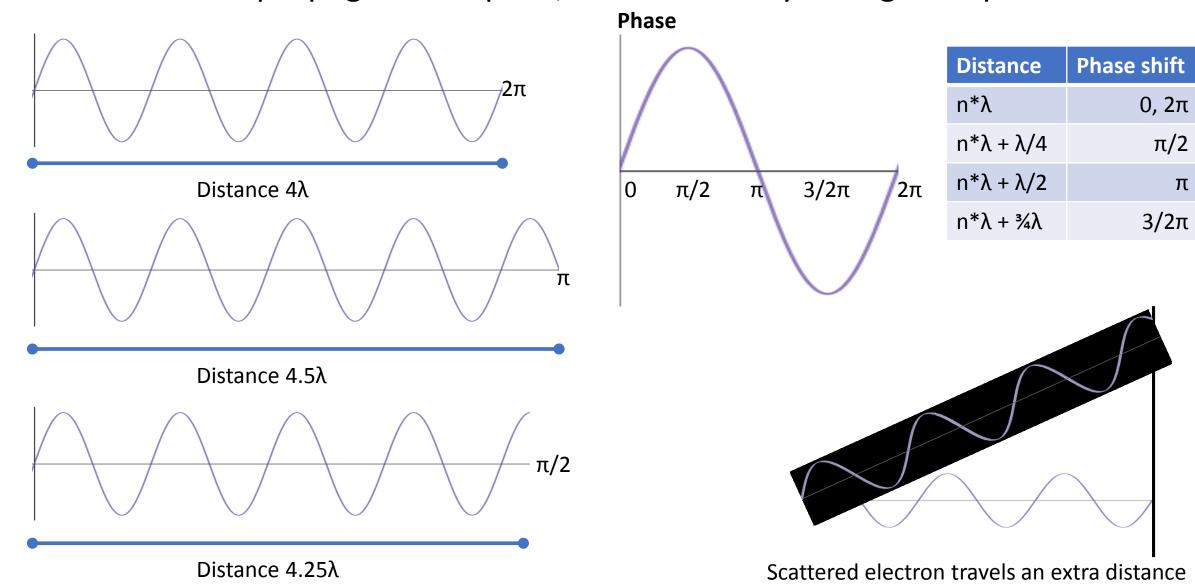
Image formation in TEM





Phase change during wave propagation

• When a wave propagates in space, it continuously changes its phase



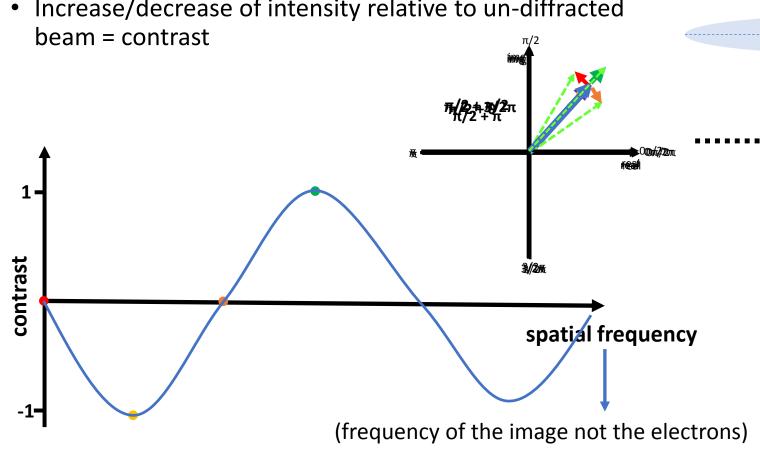
 $\pi/2$

π

Contrast transfer function

- detectors detect intensity (Amp²) not phases
- when e^{-} scatters $\pi/2$ phase-shift is introduced
- Un-diffracted beam = non-scattered e⁻
- intensity of un-diffracted beam >> diffracted

Increase/decrease of intensity relative to un-diffracted



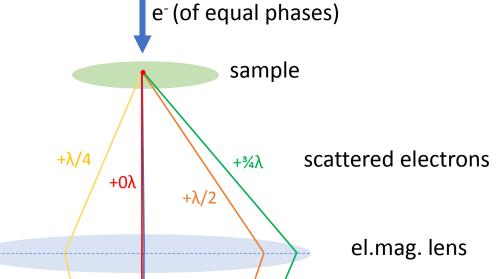
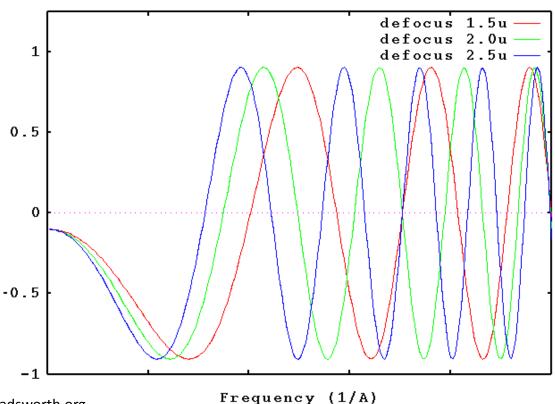


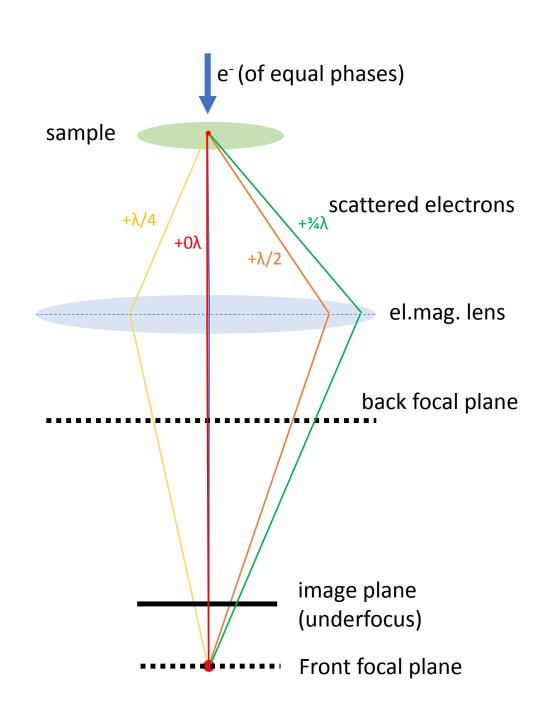
image plane

Distance	Phase shift
n*λ	0, 2π
$n*\lambda + \lambda/4$	π/2
$n*\lambda + \lambda/2$	π
n*λ + ¾λ	3/2π

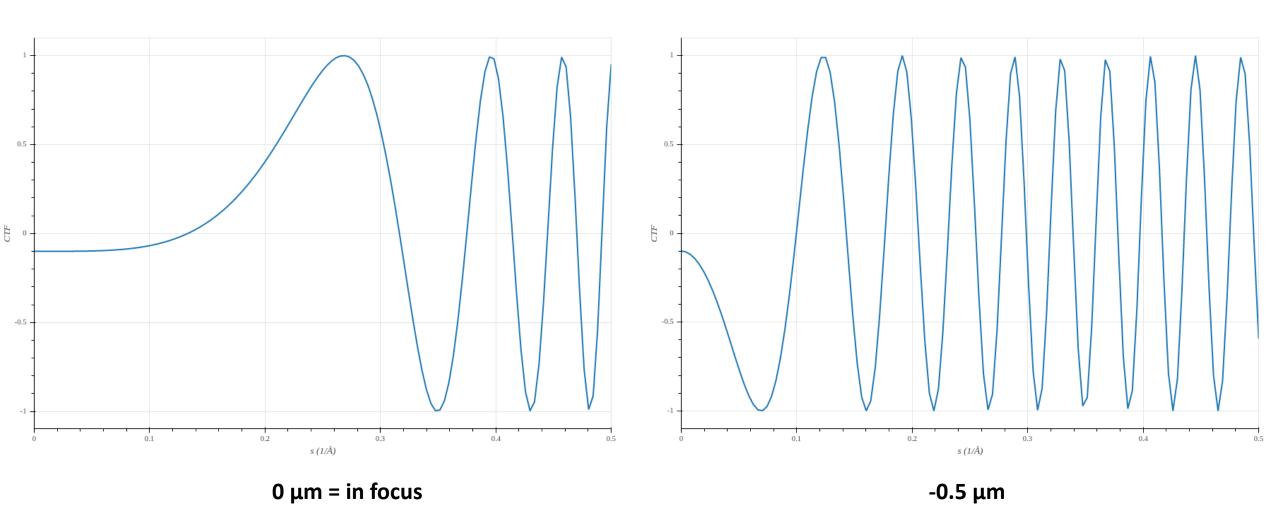
Contrast transfer function (CTF)

$$CTF = sin(-\pi\Delta z\lambda k^2 + \pi C_s\lambda^3 k^4 \over 12})$$
 defocus wavelength (e-)



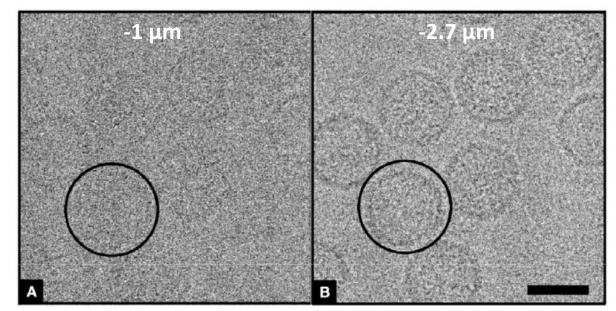


In focus images suffer from low contrast

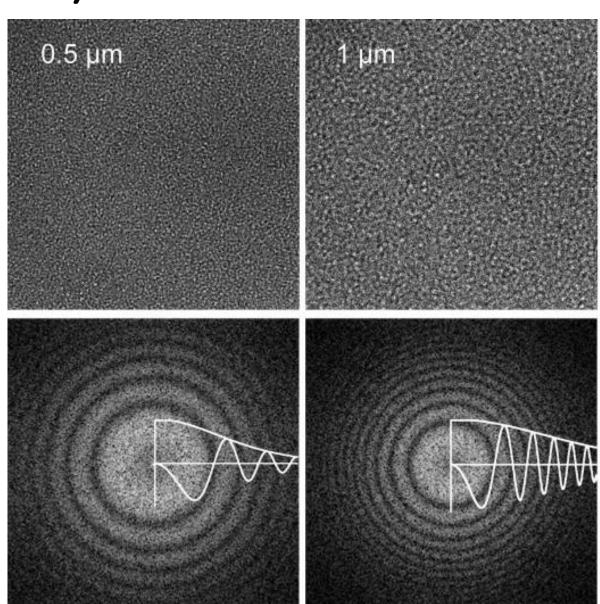


Contrast transfer function (CTF)

- Electron microscope images are convoluted by a point spread function
- Point spread function in EM is represented by CTF in Fourier space
- CTF has zero values (information loss)

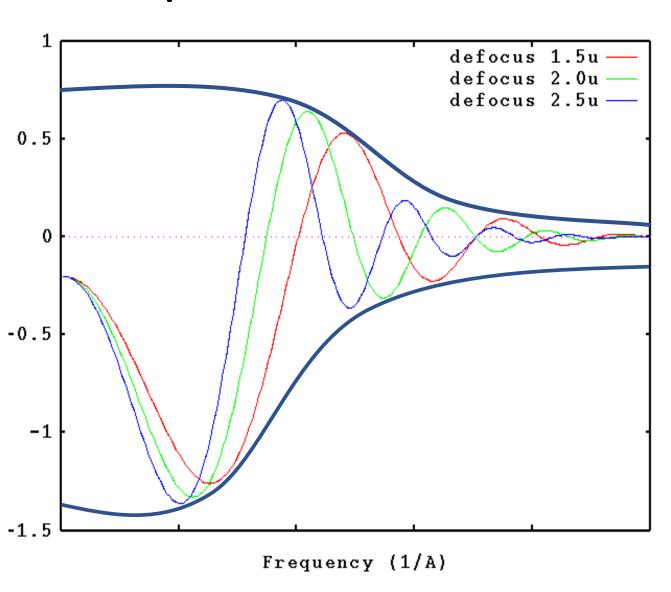


Thuman-Commike and Chiu, Micron



Orlova, Saibil 2011

Envelope function



- Hi frequencies in CTF are damped
- Envelope function
 - Chromatic aberrations
 - Focus spread
 - Energy spread
 - Variance in hi-tension
 - Defocus
 - Coherence of the electron beam

Point spread function of TEM

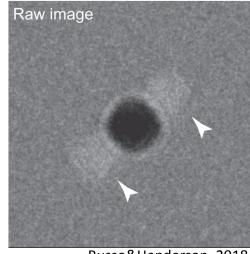
Every single point in image is the convolution of PSF and the object

$$I = O \otimes PSF$$

Image Object Point spread function

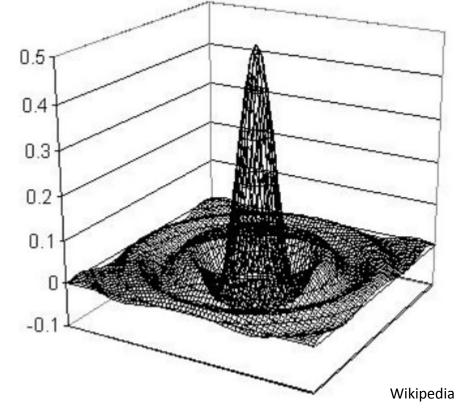
$$PSF = \mathcal{F}(CTF)$$

$$CTF = \mathcal{F}(PSF)$$



Russo&Henderson, 2018

2D point spread function



CTF correction

Real-space

$$I = O \otimes PSF$$

Convolution theorem

$$\mathcal{F}(I) = \mathcal{F}(O).\mathcal{F}(PSF)$$

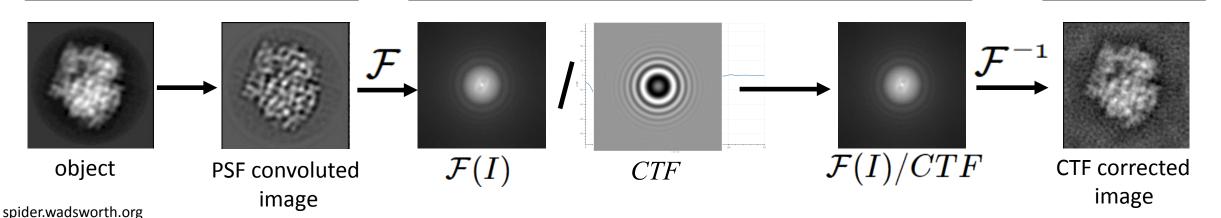
$$\mathcal{F}(I) = \mathcal{F}(O).CTF$$

What was the shape of the original object represented by the image?

$$\mathcal{F}(O) = \mathcal{F}(I)/CTF$$
 $O = \mathcal{F}^{-1}(\mathcal{F}(I)/CTF)$

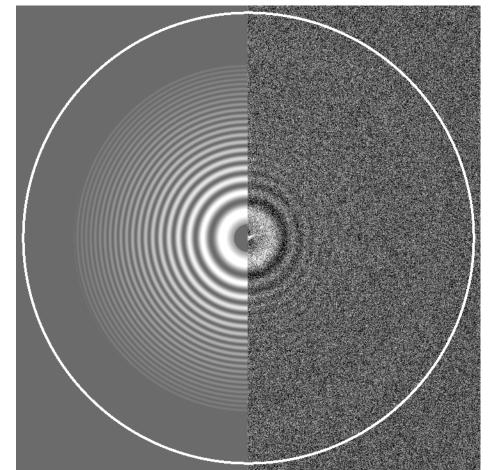
Reciprocal-space

Real-space



Estimation of CTF

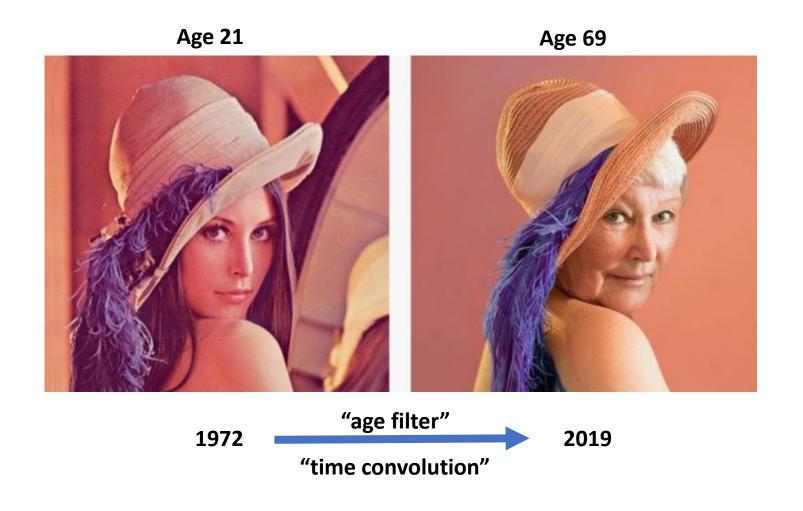
- CTF function of the image is unknown
- Simulate/fit CTF that represents the Amp oscillation of the F(I)
- Find the parameters of the CTF curve (mainly defocus)



What we have learned.....

- Spatial waves: 1D, 2D, 3D
- Fourier transform of spatial waves: 1D, 2D, 3D
- Inverse Fourier transform
- Reciprocal space and its properties
- TEM image formation: phase contrast
- CTF and its properties
- Point spread function and CTF correction

The end



Lena Forsén (*31 March 1951)