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Image formation



Image formation



A – amplitude contrast

s – spatial frequency

Cs – spherical abberation

λ – electron wavelength

z – defocus

Contrast transfer function



 - Finite source size

 - Energy spread (defocus)

 - MTF of the camera

 - Generic envelope (drift, charging, multiple scattering)

Envelope function         

Contrast transfer function



Envelope function         

kV=300,ac=0.07,cs=2.7,z=-1,apix=1,B=30

kV=300,ac=0.07,cs=2.7,z=-1,apix=1,B=300

Contrast transfer function



Low defocus         

High defocus         

Contrast transfer function



Image filtering
unfiltered image                              lowpass filtered (50A)                          lowpass filtered (250A)

130A



unfiltered image                              lowpass filtered (50A)                      bandpass filtered (1000,10A)

130A

Image filtering



John O’Brien (1991). The 
New Yorker

Projection theorem



The 2D Fourier transform of the projection of a 3D density is 
a central section of the 3D Fourier transform of the density, 
perpendicular to the direction of projection.

Projection theorem



 - 2D projections of an 3D object (handedness)

 - high noise level (low sensitivity)

 - convolution with microscope point spread functions

cryo-TEM imaging



 - 2D projections of an 3D object (handedness)

 - high noise level (low sensitivity)

 - convolution with microscope point spread functions

cryo-TEM imaging



n=1 

Averaging



n=1              n=2             n=8            n=16            n=64         n=256

Signal to noise ratio increases with square-root of n

Averaging



Sum of unaligned particles

Sum of aligned particles

Image alignment in 2D



In order to align the particles in 2D, we need to determine three parameters:
 - two translational
 - one rotational (on of the Euler angles)
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Image alignment in 2D



Cross correlation function in 1D



Cross correlation function in 1D



 - measure of similarity of two data series as a function of displacement of these functions 
 - in 2D optimal overlay of two images
 - normalized cross-correlation – ccc = <-1,1>

Cross correlation



Cross correlation function in 1D



Cross correlation function in 1D



Cross correlation function in 1D



Cross correlation function in 1D



Cross correlation function in 1D



Cross correlation function in 1D



Cross correlation function in 1D



Cross correlation function in 1D



ConvolutionCross-correlation
Cross correlation function in 1D



Cross correlation function in 2D



Image alignment in 2D



Image alignment in 2D



Image alignment in 2D



Image alignment in 2D



Convolution

FT(F  I) = FT(F) . FT(I)
FT(F  I) = FT(F)* . FT(I)

Convolution theorem

Cross-correlation in 2D



Cross-correlation in 2D



Image rotation
 - the images contain not only shift but also rotation
 - cross-correlation  - image sliding over the template (shift)
 - (log)-polar transform  → image transformation from cartesian to polar coordinates → rotational problem 
shifted to translational problem → utilization of similar approaches as for image shift determination
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Image alignment in 2D



We take a series of rings from each image, unravel them,
and compute a series of 1D cross-correlation functions.

Shifts along these unraveled CCFs is equivalent to a rotation in Cartesian 
space.

Image alignment in 2D



Image alignment in 2D



Image alignment in 2D



- after rotation

Image alignment in 2D



 - rotation and translation are interdependent – (rot→trans) ≠ (trans→rot)
   => order of the operation matters

shift: (25,45), rotation: 60°

shift→rotation 

rotation→shift 

Image alignment in 2D



 - rotation and translation are interdependent – (rot→trans) ≠ (trans→rot)
 
 - define reasonable range of shifts (e.g. (-2;+2)) and perform rotational alignment for each shifted image
 
Example: for the shift of +/-2 pixels in x and y → 25 alignment rotational alignments → each alignment 
results in optimal rotational alignment and ccc → compare ccc and select maximal ccc to determine the 
final shift and translation
  => increased complexity

Image alignment in 2D



Suppose we shift the image in x & y.
The new pixels will be weighted averages of the old pixels.
The more the mix the pixels, the worse the result will be.

Interpolation

Image alignment in 2D



Suppose we shift the image in x & y.
The new pixels will be weighted averages of the old pixels.
The more the mix the pixels, the worse the result will be.

Interpolation

Image alignment in 2D



Suppose we shift the image in x & y.
The new pixels will be weighted averages of the old pixels.
The more the mix the pixels, the worse the result will be.

Shift                                                                                  Rotation

Image alignment in 2D



The Fourier transform of noise is noise

 - “White” noise is evenly distributed in Fourier space

 - “White” means that each pixel is independent

Image alignment in 2D
Interpolation



The Fourier transform of noise is noise

 - “White” noise is evenly distributed in Fourier space

 - “White” means that each pixel is independent

The degradation of the 

images means that we

should minimize the 

number of interpolations.

Image alignment in 2D
Interpolation



Image alignment in 3D



Image alignment in 3D



Image alignment in 3D



 1. Different orientations

 2. Known orientations

 3. Many particles

 4. CTF parameters

3D reconstruction



Two general ways for 3D reconstruction:

 - Real space

 - Fourier space

3D reconstruction



We are going to reconstruct a 2D object from 1D projections. The principle is 
the similar to, but simpler than, reconstructing a 3D object from 2D projections.

 Real space reconstruction

3D reconstruction



 Real space reconstruction

3D reconstruction



 Real space reconstruction

3D reconstruction



 - reconstruction is the inversion of projection

3D reconstruction



 - reconstruction is the inversion of projection

3D reconstruction



 - reconstruction is the inversion of projection

3D reconstruction



 - reconstruction is the inversion of projection

3D reconstruction



The reconstruction does not agree well with the projections
 
Potential solution: Simultaneous Iterative Reconstruction Technique

 Original                                                        Reconstructed
3D reconstruction



 - simultaneous iterative reconstruction technique

Compute re-projections of your model.

Compare the re-projections to your experimental data.
There will be differences.

Weight the differences by a fudge factor, λ.

Adjust the model by the difference weighted by λ.

Repeat

3D reconstruction



 - simultaneous iterative reconstruction technique

3D reconstruction



 Fourier space reconstruction

Projection theorem
Central section theorem

3D reconstruction



 Fourier space reconstruction

Projection theorem
Central section theorem

3D reconstruction



 Converting from polar to Cartesian coordinates

3D reconstruction



3D reconstruction



 1. Different orientations

 2. Known orientations

 3. Many particles

 4. CTF parameters

3D reconstruction



3D reconstruction



Tomography

3D reconstruction



Angular Reconstruction

Common lines



Angular Reconstruction

Common lines



Random conical tilt



Random conical tilt



Random conical tilt



Random conical tilt



Random conical tilt



Random conical tilt



 - we cannot tilt the stage to 90 deg → “missing cone”

Random conical tilt



 - filling the missing cone

Random conical tilt




