20 CEITE

Central European Institute of Technology BRNO CZECH REPUBLIC

FB820
Lecture 6
3DEM methods

Jiri Novacek

Content

- image formation, CTF, image filtering
- image alignment in 2D
-3D reconstruction
- common lines
- random conical tilt

Image formation

$\boldsymbol{G}(X)$

$f(x) \cdot g(x)$

$F(X) G(X)$

Image formation

Contrast transfer function

Contrast transfer function

Envelope function

- Finite source size

- Energy spread (defocus)

- MTF of the camera

風

- Generic envelope (drift, charging, multiple scattering)

$$
2_{0}^{2} \subset E I T E \subset
$$

Contrast transfer function

Envelope function

$I(\mathbf{k})=E_{\mathrm{pc}}(k) E_{\mathrm{es}}(k) E_{\mathrm{f}}(k) E_{\mathrm{g}}(k) H(k) \Phi(\mathbf{k})+N(\mathbf{k})$.

$$
e^{-B k^{2}}
$$

$\mathrm{kV}=300, \mathrm{ac}=0.07, \mathrm{cs}=2.7, z=-1, a p i x=1, B=300$

Contrast transfer function

Low defocus

High defocus

Image filtering

Image filtering
unfiltered image

bandpass filtered (1000,10A)

Projection theorem

Projection theorem

The 2D Fourier transform of the projection of a 3D density is a central section of the 3D Fourier transform of the density, perpendicular to the direction of projection.

cryo-TEM imaging

- 2D projections of an 3D object (handedness)

- high noise level (low sensitivity)
- convolution with microscope point spread functions

$$
\operatorname{sic}_{0}^{\infty} \subset \text { EITE }
$$

cryo-TEM imaging

- 2D projections of an 3D object (handedness)

- high noise level (low sensitivity)
- convolution with microscope point spread functions

$$
\&_{0}^{08} \subset E I T E \subset
$$

Averaging

$n=1$

$$
\operatorname{s}_{-8}^{\infty} \subset E \mid T E \subset
$$

Averaging

Signal to noise ratio increases with square-root of n

$$
\operatorname{R}_{0}^{\infty} \subset E I T E \subset
$$

Image alignment in 2D

Sum of aligned particles

Sum of unaligned particles

$$
8_{0}^{0} \subset E I T E \subset
$$

Image alignment in 2 D

In order to align the particles in 2D, we need to determine three parameters:

- two translational
- one rotational (on of the Euler angles)

$$
\&_{0}^{08} \subset E I T E \subset
$$

Cross correlation function in 1D

Cross correlation function in 1D

$$
F \circ I(x)=\sum_{i=-N}^{N} F(i) I(x+i)
$$

Cross correlation

- measure of similarity of two data series as a function of displacement of these functions
- in 2D optimal overlay of two images
- normalized cross-correlation - ccc = <-1,1>

Cross correlation function in 1D

Cross correlation function in 1D

Cross-correlation

Cross correlation function in 2D

围

Image alignment in 2D

Image alignment in 2D

Unnormalized CCC $=f_{1} g_{1}+f_{2} g_{2}+f_{3} g_{3}+f_{4} g_{4}+f_{5} g_{5}+f_{6} g_{6}+f_{7} g_{7}+f_{8} g_{8}$

$$
+f_{9} g_{9}+f_{10} g_{10}+f_{11} g_{11}+f_{12} g_{12}+f_{13} g_{13}+f_{14} g_{14}+f_{15} g_{15}+f_{16} g_{16}
$$

Image alignment in 2D

Image f

Image g

$$
\begin{aligned}
\text { Unnormalized CCC } & =f_{1} g_{1}+f_{2} g_{2}+f_{3} g_{3}+f_{4} g_{4}+f_{5} g_{5}+f_{6} g_{6}+f_{7} g_{7}+f_{8} g_{8} \\
& +f_{9} g_{9}+f_{10} g_{10}+f_{11} g_{11}+f_{12} g_{12}+f_{13} g_{13}+f_{14} g_{14}+f_{15} g_{15}+f_{16} g_{16}
\end{aligned}
$$

Image alignment in 2D

Cross-correlation in 2D

[

Convolution

$\mathrm{FT}(\mathrm{F}$ 河) $)=\mathrm{FT}(\mathrm{F}) . \mathrm{FT}(\mathrm{I})$
 Convolution theorem
 $\mathrm{FT}\left(\mathrm{F}{ }^{\text {『 }} \mathrm{I}\right)=\mathrm{FT}(\mathrm{F})^{*} . \mathrm{FT}(\mathrm{I})$

Cross-correlation in 2D

Image $f(x)$

F.T. $F^{*}(X)$
(complex conjugate)

Image $g(x)$

F.T. $G(X)$

F.T. (CCF)

```
&08\subsetEITE\subset
```


Image alignment in 2D

Image rotation

- the images contain not only shift but also rotation
- cross-correlation - image sliding over the template (shift)
- (log)-polar transform \rightarrow image transformation from cartesian to polar coordinates \rightarrow rotational problem shifted to translational problem \rightarrow utilization of similar approaches as for image shift determination

Image alignment in 2D

Image 1

Image 2

We take a series of rings from each image, unravel them, and compute a series of 1D cross-correlation functions.

Shifts along these unraveled CCFs is equivalent to a rotation in Cartesian

Image alignment in 2D

Image 1

Image 2
radius 1
radius 2
radius 3 radius 4

Polar representation

$$
8_{0}^{0} \subset E I T E \subset
$$

Image alignment in 2D

$$
8_{0}^{-0} \subset
$$

$356.141,-2.50024$

Image alignment in 2D

- after rotation

0360
radius 1 radius 2 radius 3 radius 4

$$
8_{0}^{-0} \subset
$$

374.951, 4.53721

[^0]
Image alignment in 2D

- rotation and translation are interdependent - (rot \rightarrow trans) \neq (trans \rightarrow rot $)$
=> order of the operation matters
shift \rightarrow rotation

rotation \rightarrow shift

Image alignment in 2D

- rotation and translation are interdependent - (rot \rightarrow trans) $\neq($ trans \rightarrow rot $)$
- define reasonable range of shifts (e.g. (-2;+2)) and perform rotational alignment for each shifted image

Example: for the shift of $+/-2$ pixels in x and $y \rightarrow 25$ alignment rotational alignments \rightarrow each alignment results in optimal rotational alignment and $c c c \rightarrow$ compare ccc and select maximal ccc to determine the final shift and translation
=> increased complexity

$$
8_{0}^{0} \subset E I T E \subset
$$

Image alignment in 2D

Interpolation

Suppose we shift the image in $x \& y$.
The new pixels will be weighted averages of the old pixels.
The more the mix the pixels, the worse the result will be.

Image alignment in 2D

Interpolation

Suppose we shift the image in $x \& y$.
The new pixels will be weighted averages of the old pixels.
The more the mix the pixels, the worse the result will be.

Image alignment in 2D

Shift

1	${ }^{2} 2$	${ }^{3} 3$	${ }^{4} 4$
${ }^{5} 5$	${ }^{6} 6$	7	${ }^{8} 8$
99	10	1111	1212
${ }_{13}^{13}$	14	${ }^{15} 15$	1616

Suppose we shift the image in x \& y.

The new pixels will be weighted averages of the old pixels. The more the mix the pixels, the worse the result will be.

Rotation

Image alignment in 2D
Interpolation

Power spectrum Power spectrum profile

The Fourier transform of noise is noise

- "White" noise is evenly distributed in Fourier space
- "White" means that each pixel is independent

Image alignment in 2D
Interpolation

Power spectrum Power spectrum profile

0.0021302 .0530653983

The Fourier transform of noise is noise

- "White" noise is evenly distributed in Fourier space
- "White" means that each pixel is independent

The degradation of the
images means that we
should minimize the
number of interpolations.

Image alignment in 3D

Two translational:

$$
\binom{\Delta x}{\Delta x}
$$

Three orientational (Euler angles):
phi about z axis) (theta about y)
(psi) about new z)

These are determined in 2D. These are determined in 3D.

http://www.wadsworth.org

Image alignment in 3D

Image alignment in 3D

3D reconstruction

1. Different orientations
2. Known orientations
3. Many particles
4. CTF parameters

Baumeister et al. (1999), Trends in Cell Biol., 9: 81-5.

Your sample isn't guaranteed to adopt different orientations, in which case you many need to explicitly tilt the microscope stage.

$$
\mathrm{g}_{-1}^{0-8} \subset E \text { ITE }
$$

3D reconstruction

Two general ways for 3D reconstruction:

- Real space
- Fourier space

3D reconstruction

Real space reconstruction

We are going to reconstruct a 2D object from 1D projections. The principle is the similar to, but simpler than, reconstructing a 3D object from 2D projections.

3D reconstruction

Real space reconstruction

3D reconstruction

Real space reconstruction

3D reconstruction

- reconstruction is the inversion of projection

$$
\varepsilon_{0}^{0} \subset E I T E \subset
$$

3D reconstruction

\author{

- reconstruction is the inversion of projection
}

$$
8_{0}^{\infty} \subset E I T E \subset
$$

3D reconstruction

- reconstruction is the inversion of projection

3D reconstruction

- reconstruction is the inversion of projection

3D reconstruction

Original

The reconstruction does not agree well with the projections
Potential solution: Simultaneous Iterative Reconstruction Technique

3D reconstruction

- simultaneous iterative reconstruction technique

Compute re-projections of your model.
Compare the re-projections to your experimental data.
There will be differences.
Weight the differences by a fudge factor, λ.
Adjust the model by the difference weighted by
Repeat

$$
\varepsilon_{-\infty}^{0-8} \subset 巨 I T E \subset
$$

3D reconstruction

- simultaneous iterative reconstruction technique

Experimental projection

Model

Here, the differences (which will be down-weighted by λ) are the ripples in the background.

If we didn't down-weight by λ, we would overcompensate,

```
808\subsetEITE\subset
``` and would amplify noise.

\section*{3D reconstruction}

Fourier space reconstruction

\author{
Projection theorem Central section theorem
}

A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction.

\section*{3D reconstruction}

Fourier space reconstruction

The disadvantage is that you have To resample your central sections from polar coordinates to Cartesian space, i.e. interpolate. There are new methods to better Interpolate in Fourier space.

\section*{3D reconstruction}

\section*{Converting from polar to Cartesian coordinates}

A simple weighting scheme is to divide the weight by the radius:
\[
8_{0}^{\infty} \subset E I T E \subset
\]
\(r\) * weighting, or "r-weighted backprojection"

\section*{3D reconstruction}

If you know the orientation angles for each image, you can compute a back-projection.

Adapted from Pawel Penczek

\section*{3D reconstruction}
1. Different orientations
2. Known orientations
3. Many particles
4. CTF parameters

http://www.wadsworth.org

\section*{3D reconstruction}

If you know the orientation angles for each image, you can compute a back-projection.

\section*{3D reconstruction}

\section*{Tomography}

Computer Tomography

Electron Tomography

\section*{Common lines}

\section*{Angular Reconstruction}

\section*{Summary:}
- A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction
- Two central sections will intersect along a line through the origin of the 3D Fourier transform
- With two central sections, there is still one degree of freedom to relate the orientations, but a third projection (i.e., central section) will fix the relative

Frank, J. (2006) 3D Electron Microscopy of Macromolecular Assemblies orientations of all three.

\section*{Common lines}

Angular Reconstruction

\section*{Summary:}
- A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction
- Two central sections will intersect along a line through the origin of the 3D Fourier transform
- With two central sections, there is still one degree of freedom to relate the orientations, but a third projection (i.e.., central section) will fix the relative orientations of all three.

From Steve Fuller

\(\operatorname{sen}_{0}^{\infty} \subset\) EITE \(\subset\)

\section*{Random conical tilt}

This scenario describes a worst case, when there is exactly one orientation in the \(0^{\circ}\) image. Since the in-plane angle varies, in the tilted image, we have different views available.

\section*{Random conical tilt}

Two images are taken: one at \(0^{\circ}\) and one tilted at an angle of \(45^{\circ}\).

> Radermacher, M., Wagenknecht, T., Verschoor, A. \& Frank, J. Three-dimensional reconstruction from a singleexposure, random conical tilt series applied to the 50 S ribosomal subunit of Escherichia coli. J Microsc 146, 11336 (1987).

From Nicolas Boisset
```

808\subsetEITE\subset

```

\section*{Random conical tilt}

\section*{Random conical tilt}

\section*{Random conical tilt}

\section*{Random conical tilt}
```

- we cannot tilt the stage to 90 deg }->\mathrm{ "missing cone"

```

Representation of the distribution of views, if we display a plane perpendicular to each projection direction

The missing information, in the shape of a cone, elongates features in the direction of the cone's axis.

\section*{Random conical tilt}

\section*{- filling the missing cone}

If there are multiple preferred orientations, or if there is symmetry that fills the missing cone, you can cover all orientations.

Distribution of orientations

\[
\mathrm{g}_{-1}^{0-8} \subset 巨 I T E \subset
\]```

[^0]: 372.357,-3.21418

