Lecture 8

3DEM methods

Electron tomography

Tibor Füzik

Electron tomography

Tomography vs Single particle analysis

Single particle analysis

- Taking single projection image of the sample
- Exposing the acquisition area only once ("high" SNR)
- Assuming that the object of interest is in random uniform orientations
- Cannot make 3D reconstruction form a single 2D projection
- Not suitable for samples where 3D information from single acquisition area is needed (cells, non-uniformly organized structures)
- Sample needs to be electron transparent

• Tomography analysis

- Taking multiple projection images of the same area under different tilts
- Exposing the acquisition area multiple times (low dose, low SNR)
- Tilt angles can be assigned to the projection images
- From series of tilts, we can reconstruct a 3D volume
- Suitable for studying large samples, macromolecules *in situ*, poorly organized structures
- No ambiguity in handedness determination
- Sample needs to be electron transparent

Sample preparation for tomography

Sample preparation for tomography

Klumpe et al. 2022

https://doi.org/10.1017/S1551929521001528

Acquisition

- Acquisition of tilt-series
 - Single acquisition area exposed multiple times
- Radiation damage
 - Electron dose per tilt ~2-3 e-/Å²
 - Total electron dose = number of tilts * dose per tilt (100-150 e-/Å²)
 - Dose symmetric tilt scheme
- Inclusion of fiducials in the sample
 - Small (5-10 nm) gold beads allowing precise tracking of the tilts
- Defocus during tilt-series
 - Usually kept constant
- Proper alignment of tilt axis
 - Set of eucentric height (center of rotation)
 - Corrections

Correct eucentric height – no tilt axis offset

Zero tilt-axis offset

Nafari et al. 2008

Non-zero tilt-axis offset

http://dx.doi.org/10.1109/JMEMS.2007.912714

Compensation for tilt-axis offset

- After each tilt change a "tracking area" is imaged and by cross correlation with the previous image correction to image shift is done
- After each tilt change autofocus is done on focusing area
- Tracking and focusing area must lay on the tiltaxis

Tilt schemes

• Order in which the tilts are collected

Unidirectional tilt scheme

From most positive to most negative tilt $60^{\circ} \rightarrow -60^{\circ}$

Bidirectional tilt scheme

From zero to most positive From zero to most negative tilt $0^{\circ} \rightarrow 60^{\circ}$; $0^{\circ} \rightarrow -60^{\circ}$

Dose-symmetric tilt scheme

Positive, positive, negative, negative, positive, positive, negative, negative, 0, 3; -3, -6; 6, 9; -9, -12; 12, 15; -15....

https://doi.org/10.1016/j.jsb.2016.06.007

41

Hagen et al., 2017

Dose symmetric tilt-scheme

- First the small angle tilts are collected
 - Sample thickness is minimal => most transparent part
 - High contrast
 - Lower radiation damage
 - Contain the most useful high freq. information
- Last the high angle tilts are collected
 - Tilt-induced grow in sample thickness => decreased transparency
 - Lower contrast
 - Higher radiation damage

41

Radiation damage of cellular samples

Koning et al. 2018 https://doi.org/10.1016/j.aanat.2018.02.004

Acquisition setup

- Stage setup
 - Choice of angular increment / max tilt angle (e.g. +-60°, 3° step)
 - Single axis/dual axis
- Camera setup
 - Counting mode (ideally CDS mode on K3)
 - Short exposure times (per tilt dose 2-3 e⁻/A² => on K3 ~0.5 sec)
 - Fractionation into few dose fractions (~4 fractions; <1e-/A²/fraction)
- Energy filter setup
 - High-tilts => thick sample (more inelastically scattered electrons)
 - Zero loss mode slit set to 10-20 eV
 - Increased contrast
- Phase-plate setup
 - Low dose low contrast => compensated by high defocus
 - Volta phase plate comparable contrast at lower defocus (by applying phase shift on CTF)
- Combining SPA and tomography
 - Zero tilt acquired at higher dose (10-20 e-/A²) serves as micrograph for SPA
 - Other tilts acquired at standard dose

Energy filter, Volta phase plate (VPP)

Koning et al. 2018 https://doi.org/10.1016/j.aanat.2018.02.004

-5µm defocus, without VPP

In focus, width VPP

Danev et al. 2014 https://doi.org/10.1073/pnas.1418377111

Tilt range limitation

Leary & Midgley (2019) Electron tomography in material sciences, Springer Handbook of microscopy, pp 1279-1329

Missing wedge

Ideal (+- 90°)

Real (+- 60°)

- Missing wedge missing in Fourier space (therefore affects all the point in real-space)
- The information is missing there is no possibility to add it or recover it (it was not recorded at all)

FFT XY plane of a tomogram slice

FFT XZ plane of a tomogram slice

Koning et al. 2018 https://doi.org/10.1016/j.aanat.2018.02.004

Dual (multi) tilt tomography

• Dual-axis sample holders

Koning et al. 2018 https://doi.org/10.1016/j.aanat.2018.02.004

Phan et al. 2016 DOI: 10.1186/s40679-016-0021-2

Tomography - Data processing

- Motion correction of raw movie data of single tilts
 - Possibility of dose weighting of single tilts
- Alignment of tilt series
 - Coarse alignment cross correlation between neighboring tilts
 - Fine alignment fiducial model that describe the tilting transformations
- Aligned tilt series postprocessing
 - Fiducial removal, CTF correction
- Reconstruction of the tomogram
 - Back-projection algorithms
- Tomogram filtering
- Segmentation of tomogram
- Sub-tomogram averaging
 - Refining a high-resolution structure from the subparts of the tomogram

Tilt alignment – Coarse align

After acquisition

After coarse alignment

Fiducial based fine alignment

Projection model

- Need fiducials
- Finding the same fiducial on all of the tilts and fitting a model on their trajectory
- Allows subpixel precision alignment of tilt series

https://www.renafobis.fr/..../leforestier-tomography-renafobis_2021.pdf

Patch tracking – fine alignment

- Tilt images
- Correlating
- Fitting traje
- Every patch
- "Fiducial me any addition
- Less precise

e patches pe traceable itself without

t models

Fine alignment using the fiducial model

Reconstruction

- Back-projection
 - Low frequencies are over-represented
- Weighted back-projection
 - Low frequencies are down weighted
- SIRT
 - Simultaneous Iterative Reconstruction Technique

Nováček J.

SIRT (Simultaneous Iterative Reconstruction Technique)

- Start with a tomogram reconstruction from the backprojection of the tilts
- Reprojecting from the tomogram in the original tilt orientations
- Taking the difference between the original projection data and this reprojection at each pixel (this difference represents the amount of error in the current estimate)
- Adding the error to the tomogram by a back-projection operation

Reconstruction

Weighted Back-projection

SIRT

Missing wedge

4

XZ Plane

FTT XY Plane

FFT XZ Plane

XY Plane

Tomogram interpretation

- Visual inspection
 - Annotation of features
- Segmentation
 - Annotating/extracting segments from the tomogram
- Sub-tomogram averaging
- Filtering postprocessing (denoising)
 - Lowpass filters increase contrast loose details
 - High pass filters edge detection
 - Median filters
 - NAD Nonlinear Anisotropic diffusion
 - Need to be tuned for balance between contrast and preserved details
 - Neural network based denoising
 - Noise model trained on data

Unet-3d-10a

NAD – nonlinear anisotropic difusion

Before

After

Segmentation

Šiborová, M. et al. 2022

Segmentation

- Annotating parts of the tomogram by connecting continuous segments
 - Manual
 - Drawing
 - Thresholding
 - "Missing wedge" limits the interpretability of the features
 - Semiautomatic
 - Simultaneous annotation on multiple slices at once
 - Correlation based annotation
 - Convolutional neural networks
 - Training CNN on small part of annotated tomogram
 - Long training process
 - General models not working well

150 nm

Sub-tomogram averaging

- Increasing signal to noise ratio
- Increasing resolution
- By averaging uniformly orientationally distributed sub-tomograms we fill the missing wedge in the Fourier space

Tilt-dose weighting

From lecture 7

- High angle tilts heavily radiation damaged
 - Not containing high resolution information
- Essential for high resolution sub-tomogram averaging
- Dose weighting during movie motion correction process
- Implemented in many sub-tomogram averaging software
 - Beware not to double dose weight the data

Grant & Grigorieff 2015 https://doi.org/10.7554/eLife.06980.001

CTF estimation – defocus gradient

CTF Estimation

Unconstrained CTF fit

Constrained search range, constraining resolution Gradually depending on the tilt angle

CTF correction during tomogram reconstruction

Turonova et al., 2017

https://doi.org/10.1016/j.jsb.2017.07.007

Template matching

- Hard to locate particles in 3D tomograms with "missing wedge"
- Manual picking
 - When no template is available
 - Manual curation of template matching results
- Template matching
 - Need template for matching
 - Looking for a 3D volume in a 3D volume
 - Cross-correlation methods
 - Orientational search of the template
 - Computationally expensive
 - Produce not only coordinates (X, Y, Z) but also the best fitting orientation (ϕ , θ , ψ)
 - Many false positive matches

3D correlation map

template

Template Matching

Sub-tomogram Averaging process

- Iterative process as SPA refinement
- Initial model can be generated from the data (need to be lowpass filtered)
- Computationally expensive
 - Aligning 3D volume on 3D volume
 - 3 Euler angles, 3 shifts
- Cross correlation/Maximum Likelihood methods
 - Need to compensate for the "Missing wedge"
- Speeding up calculations by gradual unbinning of the sub-tomograms
- Coarse search on heavily binned particles
- Fine (local) search on unbinned particles

Sub-tomogram Averaging process

Sub-tomogram averaging – gradual refinement

Placeback of averaged sub-tomograms

- Positions of the sub-tomograms int the tomogram is known
- After averaging the sub-tomograms have refined orientations and shifts
- Placing back the refined volume into the original tomogram
- Describes better the data in tomogram than segmentation

Placeback of averaged sub-tomograms

Selected placeback particles

Conclusion

- Electron tomography
 - Advantages / disadvantages
 - Sample preparation
 - Data acquisition (limitations)
 - Data processing
- Electron tomography future
 - Sub-tomogram averaging *in situ*
 - Speeding up data acquisition
 - Automated data processing
 - Combination of tomography and SPA
 - Correlative microscopy (combination of fluorescent and electron microscopy)

Thanks for your attention!

#teamtomo