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ARTICLE INFO ABSTRACT

Keywords: The Outer Western Carpathians are part of the Alpine-Himalayan orogenic belt, and they are formed mostly by
Paleooceanography the Upper Cretaceous and Paleogene deep-sea “flysch” sequences. Orava region (northern Slovakia), situated in
Paleocurrents the central part of the Magura Nappe, has an important position for the solution of the geological structure and
firt_;}?:gcifzw deposits development of the Magura Nappe. At the beginning of the research, determination of the sedimentary se-

quences of the Magura Nappe and the fundamental lithotypes and lithofacies was required. A total of 1164
paleocurrent measurements were measured and assigned to lithotypes and lithostratigraphic units obtained
during the detailed sedimentological study. The main purpose of the research was the interpretation of the filling
history and tectonic activity of the Magura Basin. The results of the detailed sedimentological study were in-
tegrated with published data from surrounding regions. Presented palinspastic maps propose a reconstruction of
the filling history and tectonic activity in chronological order during the Upper Cretaceous to Oligocene. Maps
focus in detail on the western part of the Magura Basin, but they display its surroundings as well. The sedi-
mentary record reflects the activity and gradual shifting of the Western Carpathian accretionary wedge to the
north, the uplift of source areas, and the changes in the sea level of the Magura Basin. The paleocurrent analyses
joined with the sedimentological and petrographic research allowed to reconstruct the paleogeographic prop-
erties of the northern sources of detritic material (Hostyn, Fore-Magura and Silesian Ridges), of the southern
source of the material (Western Carpathians accretionary wedge) and of intrabasinal sources as well (Szczawina
and Southern-Magura Ridges). We propose a discussion about the character of filling history, defining and
position of the source areas and about Hostyn Ridge defined here.

Source areas

1. Introduction

In recent years, detailed sedimentological study has been carried out
in the central part of the Magura Nappe in the Orava region (northern
Slovakia) that was part of geological mapping (Fig. 1). This region has
historically an important position in solving of the geological structure
of the Western Carpathians because of suitable outcrops, wide age
range and a large amount of lithofacies and lithotypes. The topic of the
article focuses not only on this region, but it has combined new ob-
servations with older published data from the broader central and
western part of the Magura Nappe.

The partial purpose of the article is to determine the fundamental
lithofacies and lithotypes. A definition of the Magura Nappe strati-
graphic sequence was based on this. Lithofacies processing is more
suitable for paleogeographic reconstruction than lithostratigraphic
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processing. The reason is that the lithostratigraphic units are typically
composed of several lithofacies from different sources. In contrast, the
lithofacies or lithotypes are defined by typical petrography, lithology
and sedimentation environment, and especially they were derived from
a single source. The characteristic features of lithofacies and lithotypes
are summarized in the Table 1. Facies analysis allows the reconstruc-
tion of the depositional environments and their evolution through time.
Consequently, the palinspastic maps were proposed in chronological
order and separately for each lithofacies and lithotype with the inten-
tion to construct paleogeographic evolution of the wider area of the
Magura Basin.

The main purpose was the interpretation of the filling history of the
Magura Basin. For this purpose, palinspastic maps connect the results of
new detail sedimentological research with the results of previous works
from the surrounding regions. Extensive earlier geological research was
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Fig. 1. Schematic geological map of the Western Carpathians and adjacent areas with location of Orava region and studied area (based on Lexa et al., 2000).

mostly focused on oil prospection and field geological mapping. The
papers from Sikora and Zytko (1959); Ksiazkiewicz (1962, 1966, 1977);
Pesl (1968); Potfaj and Marschalko (1981); Marschalko and Potfaj
(1982); Potfaj et al. (1991); Rytko (1992); Bromowicz (1992);
Oszczypko et al. (2005a, b); Tet'dk et al. (2016); Laurinc and Tet'dk
(2017) and many other resources are significant to solve the develop-
ment of deposition in the central and western part of the Magura Basin.
Marschalko and Potfaj (1982), Pivko (2000, 2002) and Tet'ak (2008,
2010) dealt in detail with the paleogeography of the “flysch” deposits in
the Orava region. From the junction of new and old information we
expected the widening of knowledge especially with regard to the pa-
leogeography of the central and western part of the Magura Basin.

2. Geological background

The Western Carpathians are situated at the center of hundreds of
kilometers long undulated mountain range including the Alps, Balkans,
Dinarides and other mountain ranges as part of the Alpine-Himalayan
orogenic belt (Fig. 1). Regionally the Western Carpathians can be di-
vided into the Central Western Carpathians and the Outer Western
Carpathians. Reconstruction of the geological evolution of the Outer
Western Carpathians (synonym “Western Carpathian flysch belt”) is
difficult because the basins fill was intensively folded and thrusted.
Moreover the area is significantly covered with vegetation. The out-
crops are rare and just of smaller size. The Outer Western Carpathians
are mostly formed by deep-sea “flysch” deposits. The term “flysch” was
introduced in geologic literature in Switzerland by Studer (1827a, b) for
the typically alternating sandstones and shales. The Outer Western
Carpathians deposits are mostly of the Upper Cretaceous and Paleogene
age. Their sedimentary sequences contain an extensive record of pa-
leogeography of several basins and ridges (Fig. 2).

The Magura Nappe is the largest tectonic unit of the Outer Western

Carpathians. Together with the Biele Karpaty Unit, which, however,
occurs only in the west, outside the investigated area and has a special
status, the Magura Nappe forms tectonically the highest part of the
“flysch” belt. The stratigraphic extent of exposed deposits is from the
uppermost Jurassic to early Miocene (Lexa et al., 2000; Oszczypko
et al., 2015; Cieszkowski, 1992; Kaczmarek et al., 2016). The time,
when the Magura Basin started to open, has not yet been reliably
confirmed, because the nappe has completely detached from its sub-
stratum along the ductile Upper Cretaceous to Paleocene clayey for-
mations. Rudimentary preserved Upper Jurassic lithostratigraphic units
in Magura Nappe in Morava region (Hrouda et al., 2009; Picha et al.,
2006) and Upper (Middle?) Jurassic lithostratigraphic units in Saris
(Grajcarek) Unit in Poland (Golonka et al., 2013; Oszczypko et al., 2015
and references therein) suggest at least the Upper Jurassic opening of
the Magura Basin. The “flysch” sequences deposited mainly in the deep-
sea character environment and partly on the slope and shelf by gravity
flows and by pelagic sedimentation during the following periods
(Fig. 3).

Five tectono-lithofacies units of the Magura Nappe are present in the
studied area — Biele Karpaty, Krynica (former Oravskd Magura),
Bystrica, Raca Units and the northern part of the Raca Unit was de-
signated in Poland by Koszarski et al. (1974) as a Siary Unit (Fig. 1).
The first and last mentioned unit does not reach the Orava region,
however. The units form a fold and thrust system of the Magura Nappe.
The nappe was thrusted over the Silesian Nappe and together with
other more external units of the Outer Western Carpathians they were
thrusted over the inclined ramp of the Northern European Platform.
Moreover, the Krynica Unit was as well backthrusted to the south over
the Pieniny Klippen Belt (Peskové et al., 2012). Thus, the Outer Western
Carpathians form a huge wedge-like body with large nappes folded-
slices (present-day cross-sections were interpreted e.g. by Nemcok
et al., 2000; Slaczka et al., 2006; Picha et al., 2006; Gagata et al., 2012).
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displayed according to the lithostratigraphic and lithotype attributes in
the lithostratigraphic table as paleocurrent rose diagrams with a re-
solution of 5° (Fig. 4).

Acquired paleocurrent results were combined with older paleocur-
rent research from Orava region (Potfaj and Marschalko, 1981) and
from neighboring Kysuce region and Javorniky Mts. (Tet'ak, 2008),
Morava region (Elias, 1963) and Polish part of Magura Nappe (Sikora
and Zytko, 1959; Ksigzkiewicz, 1958, 1962, 1966; Bromowicz, 1992;
Rytko, 1992; Cieszkowski and Waskowska-Oliwa, 2001; Oszczypko,
2006; Oszczypko and Salata, 2005; Cieszkowski et al., 1999, 2007) and
with present research (Woéjcik et al., 2018; Bonova et al., 2016, 2017,
2018, 2019; Figs. 5-10).

Paleogeographic schemes (Figs. 5-10) display the aforementioned
paleocurrent measurements from the middle and western part of Ma-
gura Nappe. Paleocurrent measurements are presented in paleogeo-
graphic schemes in present orientation without taking into account of
Miocene CCW rotation. The thrust sheets of the Magura Nappe were
palinspastically undeformed within the construction of paleogeo-
graphic schemes only in part. The schemes are not displayed in scale;
therefore they are not palinspastic maps.

The changes in the depth of the basin and the speed and amount of
the supplied detritic material must be taken into account during the
reconstruction of the paleogeographic evolution of ancient areas. The
paleobathymetry of the Magura Basin, as well as surrounding basins
was estimated by Poprawa et al. (2002) on basis of many studies on
ichnofauna, microfauna and CCD estimate (e.g. Ksiazkiewicz, 1975).
Poprawa et al. (2006) determined the rate of sedimentation based on
the thickness and age of the lithostratigraphic units. Authors also took
into account the compaction of deposits due to the pressure of the
overburden complexes.

s A - f P
£ o 7l AR e |
4 7 (o /ﬁ.} RACA/BYSTRICA UNITS
el & /7 & |4 CebulaFm. |KRYNICA UNIT
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In the case of the Carpathians, it is very important to rotate the
entire Western Carpathians, including the Magura realm, to the original
position. Paleomagnetic measurements demonstrate general 50° to 60°
CCW rotation of the Outer Western Carpathians along with the Central
Western Carpathians within the Miocene (Krs et al., 1991; Panaiotu,
1998; Marton et al., 2015). Mentioned rotations in palinspastic maps
were took into account (Figs. 12-19).

The palinspastic reconstruction of depositional systems is displayed
on Figs. 12-19. Paleogeographic results from Orava region (Fig. 5) are
shown in the wider context in order to obtain a better image of the
deposition systems. The proposed palinspastic reconstruction accepted
the existing framework and basins arrangement in the Upper Cretac-
eous to Oligocene elaborated by Kovac et al. (2016). Palinspastic
schemes designed by Kazmér et al. (2003) were used to modify the area
of the Eastern Alps and Western Carpathians. But the Magura Basin and
its surroundings were much more complex. Therefore it was necessary
to add four additional schemes for a period of the Santonian — Cam-
panian, Maastrichtian — early Paleocene, early — middle Eocene and
Bartonian. Proposed model differs significantly from previously pre-
sented paleogeographic models (e.g. Oszczypko and Salata, 2005;
Golonka, 2011). Especially heavy minerals and petrographic analysis,
in addition to facial and paleocurrent analyses, should be the key to
solve the paleogeographic development of the Magura Basin (e.g.
Laurinc and Tet'ak (2017); Bonovéa, 2018; Bonova et al., 2018).

4. Results

The Szczawina type sandstone, thin-bedded (Ropianka and
Beloveza) facies, glauconitic and Magura type sandstones are the fun-
damental lithofacies and lithotypes distinguished in the Orava region in
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Fig. 3. Examples of some basic lithofacies from the Orava region: A — Ropianka Fm. — thin-bedded facies, “flysch” sediments with red and green mudstones (Bystry
potok creek SW from Pilsko Mt.), B — Upper Beloveza Mb. — thin-bedded facies — up to 20 layers per meter (Oravské Veselé village), C — Zdbava Fm. - load casts on the
bottom of Magura type sandstone layer and horizon of the claystone intraclasts (quarry north of Breza village), D — Zdbava Fm. — Magura type sandstone and thin-
bedded facies (quarry north of Breza village), E — Bystrica Mb. — glauconitic sandstones and Bystrica type mudstones, thick light layers on the top right are Lacko type
marls (quarry NW of Novot village), F — Ujezd Mb. — from the left are glauconitic sandstones, thin-bedded facies and Bystrica type mudstones (Jalovec creek), G —
Racibor Fm. -layers of Magura type sandstone and mud slumps (Veselianka creek in Oravskd Jasenica village), H — Malcov Fm. — grey mudstones calcareous
sandstones and mud slumps (Hrustinka creek SE from Hrustin village). (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

the central and western part of the Magura Basin (Tables 1 and 2). It is
preferable to describe lithofacies and lithotypes instead of lithostrati-
graphic units for the paleogeographic characteristic. The paleocurrent
measurements were sorted according to the classification of sandstones
to lithotypes and lithofacies (Fig. 5).

Cebula Fm. provided 18 paleocurrent measurements. These mea-
surements have a significant spread to the west, southwest, and
southeast. Despite the fact that measured sandstone layers differ pet-
rographically from other selected lithotypes, but a new lithotype was
not yet defined for their heterogeneity, small area of occurrence and the
low number of outcrops and measurements. Aforementioned variety of
lithotypes and sources may result in the dispersion of the measurements
in the Cebula Fm. The oldest larger deposition fan was made of
Szczawina type sandstone, which is a specific lithotype separated from
the Ropianka Fm. Dispersion of 90 paleocurrent measurements of the
Szczawina type sandstone is significant (Fig. 5).

Thin-bedded “flysch” facies is the most widespread deposit in the
Magura Basin. Thin-bedded deposits can be divided according to the
character of sandstones and claystones into two facies. Both facies have
constantly stable paleocurrent nature. Green laminated sandstones of
the Ropianka facies were deposited during the Upper Cretaceous and
Paleocene (41 paleocurrent measurements). The paleocurrent direc-
tions of the Ropianka facies are significantly dispersed like in the
Szczawina type sandstone (Fig. 5). Brownish and grey laminated
sandstones of the Beloveza facies were deposited during the Eocene.
This lithofacies occurs not only in the Beloveza Fm., but it is common as
well in the Redikalne, Zabava, Racibor, Ujezd Mbs. and Vychylovka
Fms. (together 342 measurements; Fig. 5). The directions to SW sig-
nificantly prevail in the BeloveZa facies (Figs. 6 and 7). The paleocur-
rent directions to SE and S are common as well.

The glauconitic sandstones occurred in a smaller amount already in
the “Senonian” and lower Paleocene sequences, but the glauconite in
sandstones was abundant in the Magura Basin especially in the middle
Eocene. Glauconitic sandstones formed then an extensive depositional
fan in the central northern part of the basin. The glauconitic sandstones
are conventionally divided according to their grain size into three
partial lithofacies (Table 2). Glauconitic sandstones are the part of
several lithostratigraphic units. Together 96 measured paleocurrent
directions are significantly dispersed to NW, SW, and SE with general
direction to the SW in Orava region (Fig. 4). Depositional fan of glau-
conitic sandstones gradually shifted to the northern margin of the basin
at the end of middle Eocene (Figs. 8-10).

The Magura type sandstone deposited in several lithostratigraphic
units. The deposition of the Magura type sandstone in a single large fan
resulted in a clear orientation of the paleocurrents to the SW (555
measurements; Fig. 4). Sandstones formed large volumes in the Krynica
Unit throughout the Eocene. The Magura type sandstone occurred in
the Bystrica Unit only during the middle Eocene (Oravské Veselé Mb.),
but in the larger amount it occurred externally in the Raca Unit (Kycera
Mb.) during the late Eocene (Figs. 7-10).

Paleocurrent directions of the Malcov facies (sandstones and
slumps) reflected the dynamics of the environment in which they ori-
ginated (22 measurements). The paleocurrent measurements are sig-
nificantly dispersed. There is a slight predominance of the direction to
SW, but there are also directions to the NW and N. The fusion of
measurements from different lithotypes may affect the dispersion of the

paleocurrent directions as well.

5. Discussion
5.1. Source areas

Sedimentary fill of Magura Basin was preserved only as the root-less
nappes. The original basement of the basin as well as the source areas
do not protrude on the current surface. The geological structure of the
source areas can be interpreted only from the detritic material, pebbles
and rare olistolithes. Paleocurrent directions and the increasing proxi-
mity of clastic facies focus the localization of the source areas.

Three types of the source areas can be distinguished in the Magura
Basin - the northern sources (passive margin), the intrabasinal sources
(thrust belts) and the southern source (active accretionary wedge). The
northern sources are the Hostyn, Fore-Magura and Silesian Ridges as
the sources of the Solan, Mutne, Skawce, Riecky, Pasierbiec, Bystrica,
Vsetin, in part Ropianka, and other lithostratigraphic units. The
southern source is represented by the prograding Western Carpathian
accretionary wedge (Western Carpathian thrust belt or Neopieninic
Exotic Ridge). The wedge gradually consumed the Magura Basin from
the south. This source supplied the basin with particularly quartz-car-
bonate sand for e.g. the Jarmuta, Proc, Javorina, Svodnica and Chabova
Fms. Intrabasinal sources (Szczawina and Southern-Magura Ridges)
supplied the detritic material to the Szczawina, Piwniczna, Zébava,
Kycera, Poprad, in part Ropianka and other lithostratigraphic units.

5.1.1. Northern sources

The northern source has been traditionally called as Silesian Ridge
(Ksigzkiewicz, 1962; Elias, 1963). The existence of other sources, e.g.
Fore-Magura Ridge (Golonka et al., 2005; Cieszkowski et al., 2012),
Grzybow Ridge (Cieszkowski, 2002) and Bukowiec Ridge (Slaczka,
2005), was considered later. A new ridge — Hostyn Ridge is proposed as
a separate western continuation of the Fore-Magura Ridge.

The Silesian Ridge was composed of mostly Variscan metamorphic
and igneous rocks according to pebbles and heavy minerals. The ridge
was built of phyllites, schists, gneisses, granulites and quartzites, felsic
igneous rocks and sedimentary rocks, mainly limestones (Oszczypko
and Salata, 2005 and references therein). The Silesian Ridge supplied
clasts with the late Carboniferous (Pennsylvanian) to Permian meta-
morphism (Poprawa et al., 2004, 2006). The Silesian Ridge was a
fragment of the Bohemian Massif (Moravian Variscides/Moldanu-
bicum/Brunovistulia), with similar geological structure (Oszczypko
et al., 2015; Gaveda et al., 2019 and references therein).

The clastic material of the Solan Fm. (Elids, 1963; Tet'ak, 2008),
Altlengbach Fm. (Faupl, 1996) and Riecky type sandstone (Tet'dk,
2008) was supplied from the northwestern margin of the Magura Basin.
The character of the source area was similar to the Silesian Ridge
(Faupl, 1996; Hanzl et al., 2000; Poprawa et al., 2004). It was necessary
to define a new separate ridge — Hostyn Ridge. This name was chosen
upon the marginal Hostyn lithofacial zone and Hostyn Mts., for which
the Solan type sandstone, derived from this ridge, are typical. Soléi
type sandstone forms more than 1000 m thick complex (Pesl, 1968).
The Hostyn ridge can be compared rather with Fore-Magura Ridge and
regarded as its continuation to the west. Ridge was active mostly at the
end of the “Senonian” to Paleocene, and in short events also during the
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middle and late Eocene (Faupl, 1996; Elias, 1963). The Hostyn Ridge, as
a Moravian equivalent of Silesian Ridge, is “crystalline ribbon con-
tinent” (Sotak, 1990). According to granite clasts character it is Var-
iscan age (Hanzl et al., 2000).

The Fore-Magura Ridge was not separately studied with respect to its
rock composition and age, as it was usually confused with the Silesian
Ridge. The Fore-Magura Ridge was located south of the Silesian Ridge.
Their similar basement could be supposed (Cieszkowski, 2002;
Cieszkowski et al., 2007). This postulate is indirectly affirmed by the
studies which deal with the northern source of the Magura Basin.
Oszczypko et al. (2015) mentioned a Variscan age of the plutonic and
metamorphic rocks derived from the Silesian Ridge to the Magura
Basin, ignoring the existence of the Fore-Magura Ridge. Based on the U-
Pb zircon age of mafic exotics, Gaveda et al. (2019) presume, that
unlike Brunovistulia character of the Silesian Ridge, the source of Ma-
gura Basin was the Fore-Magura Ridge, whose basement potentially
represents an ancient accretionary prism on the margin of Eastern
European Craton.

The Fore-Magura Ridge was the source area for the glauconitic
sandstones of Bystrica Mb. The ratio of monocrystalline to poly-
crystalline quartz in glauconitic sandstones is high (56.7%/8.8%).
Lithic fragments form only 2.9%; sedimentary lithic fragments form
2.2%. Microsparitic and micritic carbonates prevail. Mica schist and
phyllites are common, but the gneisses are rare. Felzic volcanic frag-
ments are common, but basic volcanites are rare. The glauconite con-
tent is on average 7.5%. In many samples, the content of large for-
aminifera is increased (Laurinc in Tet'dk et al., 2016c; Laurinc and

Tet'dk, 2017). The composition of the glauconitic sandstones indicates
passive character of the ridge with features of the inner craton and only
in part also of the recycled orogen (Fig. 11).

Hostyn, Silesian and Fore-Magura Ridges contain, except Variscan
crust similar to the Bohemian Massif, incorporated element of
Cadomian (Pan-African) crust similar to Brunovistulian, Malopolska
and Dobrogea terranes and Moesia platform (Sotdk, 1992; Winchester
et al., 2002; Budzyn et al., 2011). Based on heavy minerals analysis
Boénova (2018) assumes a different structure of source area for sand-
stones of Mrazovce and Makovica Mbs. in contrast to the sandstones
from the western part of Raca Unit.

5.1.2. Intrabasinal sources

The Szczawina Ridge, as a source of the Szczawina type sandstone,
was built predominantly from magmatic and metamorphic rocks during
the Maastrichtian and Paleocene (Oszczypko and Salata, 2005; Tet'dk
et al. 2016). The absence of oceanic crust rocks and a small amount of
chromian spinels points to continental crust. Laurinc and Tet'édk (2017)
defined source area like quartz, less transitional quartz-lithic up to the
lithic recycled orogen (Fig. 11, in sense Dickinson, 1985). Several
smaller depositional fans were deposited north of the Szczawina Ridge.
The composition of the western and eastern part of the Szczawina Ridge
was similar (Oszczypko and Salata, 2005). The Szczawina type sand-
stone has analogous lithological composition to the Magura and Kycera
type sandstones with indistinctive differences. The ratio of mono-
crystalline to polycrystalline quartz in Szczawina type sandstone is low
(44%/13.5%). Lithic fragments form 5.9%; sedimentary lithic
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Fig. 5. Paleogeographic scheme of the western and central part of the Magura Basin during the Maastrichtian to early Paleocene (50° CCW Miocene rotation into

present position was applied; modified after Pivko, 2000 and Tet'dk, 2008, 2016).

fragments form 2.9%. Microsparitic, sparitic, (less micritic) carbonates
prevail. Typical is the high content of muscovite (6.7%) and biotite
(4.5%). The mica schist and phyllites are common, but the gneisses are
rare. Besides felsic volcanic fragments, basic volcanites are common.
Fossils and glauconite are present in lesser extent (Laurinc in Tet'dk
et al., 2016¢; Laurinc and Tet'dk, 2017).

The Southern-Magura Ridge (cordillera) was defined by Marschalko
(1975) and lately more precisely described as a SE source within Ma-
gura Basin with uplifted tectonized continental crust (Marschalko et al.,
1976; Misik et al., 1991a). The Southern-Magura Ridge was ambigu-
ously described by some authors as a south part of Magura Basin and
simultaneously thrust belt at the front of the Western Carpathians ac-
cretionary wedge, or north part of Pieniny Klippen Belt (e.g. Poprawa
and Malata, 2006). The Southern-Magura Ridge, as a source of the
Magura type sandstone, derived from the ridge during the early to the
late Eocene (Oszczypko and Salata, 2005; Tet'ak et al. 2016), was
predominantly built of magmatic and metamorphic crystalline rocks.

The ridge supplied clasts with the late Carboniferous to Permian me-
tamorphism (Poprawa et al., 2004, 2006). The absence of oceanic crust
rocks and chromian spinels points to continental crust, also confirmed
by Oszczypko et al. (2015). The ridge did not contain sedimentary rock
typical for the Bohemian Massif (Silurian shales, Devonian and Carbo-
niferous limestones, etc.; Misik et al., 1991a, b). The ridge did not
supplied the material from the south zones like Pieniny Klippen Belt
and Central Carpathian units until late Eocene to Oligocene when
Southern-Magura Ridge was incorporated to Western Carpathian ac-
cretionary wedge (Misik et al., 1991a, b; Olszewska and Oszczypko,
2010; Salata and Oszczypko, 2010).

The Southern-Magura Ridge was quartz, less transitional quartz-
lithic up to lithic recycled orogen according to the character of the
material (Fig. 11). The material derived from this source was similar to
the Szczawina Ridge. The Kycera type sandstone is the subtype of
Magura type sandstone. The composition of both is similar. The ratio of
monocrystalline to polycrystalline quartz is low (43.6%/14.4%, in
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Fig. 6. Paleogeographic scheme of the western and central part of the Magura Basin during the late Paleocene to early Eocene (50° CCW Miocene rotation into
present position was applied; modified after Pivko, 2000 and Tet'dk, 2008, 2016) (explanations are in Fig. 5).

Kycera type sandstone 43%/18%). Lithic fragments form 10.5%; sedi-
mentary lithic fragments form 7.8%. Microsparitic, sparitic, (less mi-
critic) carbonates prevail (5.6%, in Kycera type sandstone only 1.1%).
The mica schist and phyllites are common, but the gneisses are rare.
Felzic volcanic fragments are commonly accompanied by basic volca-
nites. Fossils and glauconite are negligible (Laurinc in Tet'dk et al.,
2016¢; Laurinc and Tet'dk, 2017).

Bromowicz (1992) confirms a similar composition of clastic sedi-
ments containing quartz, feldspars, granitoids, intermediate and felsic
volcanites, limestones and metamorphics rocks. The Southern-Magura
Ridge had character of thrust belt with mountain topography (Poprawa
and Malata, 2006) which supplied clastic material for a deep-water
submarine fan in to the Krynica and later as well to the Bystrica and
Raca part of the Magura Basin since the early Eocene (e.g. Bromowicz,

1992; Tet'dk et al. 2016). The Eocene deposits of the Krynica Unit of the
Magura Basin contain fragments of the crystalline basement rocks de-
rived from the continental crust and the clasts of the Mesozoic deep and
shallow-water limestones (Olszewska and Oszczypko, 2010). The clastic
material was not derived by erosion of the Czorsztyn Ridge or the
Pieniny Klippen Belt, but according to Misik et al. (1991a) from “the
basement of the Magura Basin” (Oszczypko et al., 2015).

Bénova (2018) and Bénové et al. (2018), based on a comparison of
clastic material and heavy minerals from Krynica Unit with possible
sources, despite the considerable differences, report that Tisza Mega-
unit cannot be excluded as a partial source of material supplied in to the
Krynica zone of Magura Basin. The more likely source of siliciclastic
material is Marmarosh Massif, which emerged on the eastern edge of
the Magura Basin at the time of sedimentation. It is possible, that the

= g SR
=
S PR

early — middle
Eocene

| 47.8 Ma

Fig. 7. Paleogeographic scheme of the western and central part of the Magura Basin during the early to middle Eocene (50° CCW Miocene rotation into present
position was applied; modified after Pivko, 2000 and Tet'dk, 2008, 2016) (explanations are in Fig. 5).
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Fig. 8. Paleogeographic scheme of the western and central part of the Magura Basin during the middle Eocene (Lutetian) (50° CCW Miocene rotation into present
position was applied; modified after Pivko, 2000 and Tet'dk, 2008, 2016) (explanations are in Fig. 5).

erosion of the Dacia Mega-unit (Marmarosh Massif crystalline base-
ment, sub-ophiolitic Fore-Marmarosh Suture Zone) and Tisza Mega-unit
supported detrital material including Cr-spinels in to the Magura Basin
(Oszczypko et al., 2006; Olszewska and Oszczypko, 2010; Oszczypko
et al., 2016; Bénova et al., 2017, 2018, 2019).

The Hostyn, Silesian, Fore-Magura, Szczawina and Southern-
Magura Ridges were exposed by the compression, which uplifted the
ribbons of thinned continental crust with Variscan crystalline rocks si-
milar to the Bohemian massif and the fragments of Cadomian crust
(Soték, 1992; Poprawa and Malata, 2006; Golonka et al., 2003;
Golonka, 2011). Deposition of the red mudstones from the Campanian
to early Eocene (in some region up to Bartonian) in the studied region
point to the connection of the Magura Basin with the Atlantic Ocean
through the Ligurian Ocean and with the Neotethys through the

Ceahlau-Severin Ocean (compare Oszczypko et al., 2015).

5.1.3. Southern source

The Western Carpathian accretionary wedge was extended along the
southern margin of the Magura Basin. At the end of the Cretaceous,
Czorstyn Ridge, a continental ribbon, was incorporated to the wedge
(Plasienka, 2012). The accretionary wedge was defined in Eastern
Slovakia as Neopieninic Exotic Ridge, uplifted during the Paleocene to
early Eocene (Marschalko et al., 1976; Misik et al., 1991b). The wedge
was characterized by its prograding, which culminated during the late
Eocene and Oligocene (e.g. Kovac et al., 2016). The wedge supplied
high amount of the quartzite and carbonate clastic material (up to
pebbles and olistoliths) into the basin, accompanied with low- to
medium grade metamorphic rocks with only low content of feldspar,

s ?

25 ~
41.2 - 37.8 Mal

middle Eocene
(Bartonian)

2 A T S e
e P
=

Fig. 9. Paleogeographic scheme of the western and central part of the Magura Basin during the middle to late Eocene (50° CCW Miocene rotation into present
position was applied; modified after Pivko, 2000 and Tet'dk, 2008, 2016) (explanations are in Fig. 5).
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Fig. 11. Petrographic characteristics of the sources of fundamental lithotypes and lithofacies from central and western part of Magura Nappe (based on Tet'dk, 2008;
Laurinc and Tet'ak, 2017). A — The discrimination diagram interpreting the tectonic nature of the source areas of sandstone (Dickinson, 1985); B — Classification of
sandstones based on the lithic clasts content (Pettijohn et al., 1972). (Q — Quartz total, F — Feldspar, L — Lithics, Lv — magmatic and volcanic lithic fragments, Lm —

metamorphic lithic fragments, Ls — sedimentary lithic fragments).

granitoid and volcanic clasts (Javorina, Drietomica, Chabova Mbs. and
Jarmuta and Pro¢ Fms.). As it was mentioned above, the southern edge
of the Magura Basin was tectonically complicated thrust belt built of the
different Pieniny Klippen Belt units (Sub-Pieniny, Pieniny, Klape, Fa-
tric), which supplied various material, also recycled from the Veporic-
Gemeric-Meliatic-Silicic collisional orogenic belt including the Upper
Jurassic — Upper Cretaceous subduction-related magmatism with
chromian spinels (Misik et al., 1991a, b; Misik, 1996; Winkler and
Slaczka, 1994; Plasienka, 1995, 1996, 2012; Madzin et al., 2019).

5.2. Deposition in the Magura Basin

Several factors have a decisive influence on the deposition in sili-
ciclastic basin. Namely they are: (1) source area — size, topography,
geological structure, tectonic activity, weathering, climate, (2)
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transport of detrital material — granularity and amount of material,
dynamics of current, sorting, (3) deposition conditions in the sedi-
mentary basin — tectonic activity, deposition depth, CCD, local or global
variations of sea level, burial and diagenetic processes, bottom currents
influenced by connection with ocean. These factors had a crucial effect
on the provenance, value, grain size and distribution of clastic sedi-
ments within the basin. The interplay between the above-mentioned
factors has been intensively investigated by generations of geologists
also in the Western Carpathians in the past.

The deposition environment of the Outer Western Carpathian
nappes represented facies of the internal troughs (Magura and Fore-
Magura/Dukla Basins) and external basins (Pouzdiany-Zdanice-
Waschberg, Sub-Silesian, Silesian and Skole Basins). The Upper
Cretaceous to Paleogene sediments of the Outer Western Carpathians
were deposited on an attenuated continental and/or oceanic crust of the
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Northern Penninic realm and on the passive margin of the Northern
European Platform and/or Bohemian Massif (Kovac et al., 2016). The
Magura Basin, as an SW part of the Western Carpathian flysch basins
realm, was opened by syn-rift extension during the Upper Jurassic to
Lower Cretaceous (Poprawa and Malata, 2006; Golonka, 2011) ac-
cording to the oldest deposits in the Morava (Elias et al., 1996) and in
Slovakia — Poland (Sari3, Grajcarek Unit, Plasienka, 2012; Oszczypko
et al., 2015; Jurewicz, 2018). Sedimentation of carbonates dominated
in the Magura Basin during the Upper Jurassic to Lower Cretaceous
(Picha et al., 2006; Oszczypko et al., 2015; Plasienka, 2012). The Ma-
gura Basin was not separated basin, but it was interconnected with
neighboring basins (Rhenodanubian and Dukla Basins). The Magura
Basin was a NE prolongation of the Piemont-Liguria Ocean (Schmid
et al., 2008). Since the Lower Cretaceous, the Magura Basin was also
connected with the Valais Ocean through Rhenodanubian Basin
(Schmid et al., 2008; Oszczypko et al., 2015).

The Silesian Basin, as a NE part of the Western Carpathian flysch
basins, was individualized during the Lower Cretaceous by the Silesian
Ridge uplift. Significant uplift of the Silesian Ridge, as a thrust belt with
mountain topography, was caused by compression tectonics from the
Turonian up to early Paleocene (Poprawa and Malata, 2006;
Cieszkowski et al., 2012).

Even the oldest preserved sediments of The Magura Basin have the
character of deep-sea sedimentation. Upper Jurassic to Lower
Cretaceous carbonates, marls and “flyschlike” deposits form Kurovice
tectonic klippen and Cetechovice and Lukovecek olistoliths (Picha
et al., 2006). The deposits of the Outer Western Carpathian units are
mostly composed of synorogenic flysch deposited in the deep-marine
environment. These deposits are represented by a variety of gravity-
driven currents (turbidites, debris flows and olistoliths). The sedi-
mentation took place in diverse depositional environments from the
steep slopes of the ridges to the deep-water environment in the central
part of the basin. Prevailing monotonous hemipelagic and thin-bedded
flysch sedimentation was disrupted by several depositional fans pene-
trating hundreds of kilometers deep into the basin. Several sandstone
depositional deep-sea fans could be defined based on detailed facial and
petrographic research and paleocurrent measurements (Table 1; e. g.
Laurinc and Tet'ak, 2017).

Detritic material was supplied either from the southern or northern
margin of the basin or from the intrabasinal sources. The gravity cur-
rents deposited wide wedge (Solan and Mutne type sandstones) or
smaller fans (Riecky, Skawce, and Mrazovce type sandstones) along the
northern passive margin of Magura Basin. Several smaller fans formed a
wedge along with the southern active Western Carpathian accretionary
wedge (quartz-carbonate sandstones). Afore-mentioned fans and lobes
penetrated into the more or less stable and smooth plain environment
with thin-bedded and/or variegated mudstones sedimentation.
Especially the bodies of huge lobes of Magura and glauconitic sand-
stones penetrated deeper into the Magura Basin. Shortly active in-
trabasinal source arises in the center of the basin (Szczawina type
sandstone) during the Maastrichtian and Paleocene (Oszczypko and
Salata, 2005; Tet'ak et al. 2016).

The deposits of basin-fill were gradually (from the south) scraped
off their basement and stacked in fold-and-thrust system of the accre-
tionary wedge during the Paleogene to early Miocene subduction (e.g.
Kovac et al., 2016). The subduction of an active southern margin caused
the progressing reduction and disintegration of sedimentation space.
Deposition culminated in the basin during the late Eocene to (?) early
Miocene — Malcov Fm. (Tet'ak et al. 2016).

5.2.1. Santonian — Campanian

The early “Senonian” to Campanian (Fig. 12) was a period of in-
creased tectonic activity in the Central Carpathians (Plasienka, 2012;
Pelech et al., 2016). However, this activity culminated in the area of the
Pieniny Klippen Belt. The sedimentary sequences of the Magura Basin
from this period present only low tectonic activity connected with high
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sea level. Magura Basin bottom was approximately in the depth of 2.5
to almost 4km (Poprawa et al., 2002). Basin was separated from the
Silesian Basin by Silesian Ridge in the NE (Cieszkowski et al., 2012).
The deposition of variegated mudstones and claystones accompanied by
thin-bedded lithofacies unified the whole deposition area of the Magura
Basin during the Santonian to Campanian. The supply of detrital ma-
terial was insignificant. No notable depositional fan was active. Only
the marginal parts and, in particular, the southern edge of the Magura
Basin, which was under the influence of the tectonic activity of the
Western Carpathian accretionary wedge, were exceptions.

Deposition in the Magura Basin during the early “Senonian” was
represented mainly by variegated (red and green) mudstones and
marlstones irregularly interlayered with thin layers of sandstones.
Despite the monotony of sediments, a number of lithostratigraphic units
have been defined: Cebula Fm., Malinowa Shale, Haluszowa Fm.,
Ondrasovec Mb., Pichov Mb., Kaumberg Fm. Sedimentation of red
mudstones (Cebula Fm.) below the CCD prevails over rare turbidity
currents deposits in the central part of the basin. Variegated marlstones
were more abundant at the margins of the basin (Birkenmajer and
Oszczypko, 1989; Potfaj, 1993; Faupl, 1996; Tet'dk et al. 2016).

The deposition of the Cebula Fm. continued by deposition of var-
iegated hemipelagic mudstones, marls and with slowly increasing
amounts of turbidity currents derived probably from mildly uplifted
Fore-Magura Ridge during the Campanian (Poprawa and Malata,
2006). The thin-bedded “flysch” deposits gradually overlapped most of
the Magura Basin. Green laminated thin-bedded sandstones alternated
with non-calcareous green and red mudstones. Several minor deposi-
tional fans have interfered with the red mudstones. The deep-sea
hemipelagic deposits of the Cebula Fm. are the earliest deposits in the
Orava region.

5.2.2. Maastrichtian — early Paleocene

This ca. 10 Myr long period was characterized by increased tectonic
activity and relatively long-term sea level decrease (Fig. 13). The Ma-
gura Basin depth was about 2 to 3.5km (Poprawa et al., 2002). Men-
tioned conditions had an influence on the increased supply of clastic
material into the basin and on facial heterogeneity of deposits. Clastic
sedimentation of gravity currents dominated in the Magura Basin since
Maastrichtian. The higher tectonic activity was caused by folding and
thrusting of the Central Western Carpathians and PKB over the southern
edge of the Magura Basin. The southern margin of the Magura Basin
(Grajcarek/Sari$ Unit represented by Jarmuta and Pro¢ Fm.) got to the
foreland position at the front of the Central Western Carpathian ac-
cretionary wedge (Plasienka, 2012, 2014; Oszczypko et al., 2015;
Jurewicz, 2018; Madzin et al., 2019).

Since the Maastrichtian, possibly as well earlier, the Fore-Magura
Ridge mildly uplifted and separated Fore-Magura Basin from the
Magura Basin (Poprawa and Malata, 2006; Cieszkowski et al., 2007).
The Fore-Magura Ridge was responsible for the supply of the proximal
turbidites of the Mutne sandstone Mb. (Cieszkowski et al., 2007). At the
same time, the Hostyn Ridge supplied the clastic material of the Solan
Fm. (Elias, 1963; Pesl, 1968) and Altlengbach Fm. (Faupl, 1996) from
the NW. In general, upward coarsening debris flows and slump sand-
stones to conglomerates of the Solan Fm. formed a large wedge (ramp)
of coarse clastic sediments and olistoliths along the edge of the ridge.
Solan type sandstone contains a high proportion of grains and pebbles
of Jurassic limestones and fragment of coralline algae. Solén type
sandstone shows many similarities with the Istebna type sandstone
(Picha et al., 2006). Hostyn Ridge was related to the Fore-Magura
Ridge.

The Southern edge of the Magura Basin was bounded by a thrust
belt as a result of the Maastrichtian collision of the lower plate
Czorsztyn Ridge (Oravic) ribbon continent with the upper plate of the
Tatric (Austroalpine-Slovakocarpathian) margin. The overriding
Pieniny Nappe supplied the Sub-Pieniny Unit with Gregorianka Breccia.
During the Paleocene, the Sub-Pieniny Unit was detached from its
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basement substratum and thrusted over the frontal quartz-carbonate
sandstones of Jarmuta and Pro¢ Fms. (later Sari§ Unit, Plagienka, 2012;
Madzin et al., 2019).

A new ridge was uplifted in the center of the Magura Basin, which is
called Szczawina Ridge according to Szczawina type sandstone that
originated here and was transported northward to the Bystrica and
Raca part of the basin. The existence and location of the ridge could be
deduced from facial distribution and differences between the Krynica
and Bystrica Units due to shortening of space. Oszczypko and Salata
(2005) already mentioned small local intrabasinal ridge, which sup-
plied clastic material of the Szczawina type sandstone and could have
appeared on the boundary between the Krynica and Bystrica Units. It is
not known whether any deposits from the southern edge of the Szcza-
wina Ridge would be preserved. If so, they are not preserved on the
present surface.

The highest activity of the Szczawina Ridge was during the
Maastrichtian and it continued to the late Paleocene. The activity of the
ridge decreased during the Paleocene and the ridge terminated the
supply of the detritus probably by higher sea level during the late
Paleocene. Based on the geological mapping and paleocurrent mea-
surements, could be identified at least 4 submarine fans, which material
was derived from this ridge (Sikora and Zytko, 1959; Ksigzkiewicz,
1962, 1966; Rytko, 1992; Pivko, 2002; Oszczypko and Salata, 2005;
Tet'dk et al. 2016). The age of deposition of the Szczawina type sand-
stone in the Bystrica and Raca Unit in the Beskid Wyspowy and Gorce
Mts. (Beskid Wyspowy fan) is the Maastrichtian, eventually the Cam-
panian (Oszczypko et al., 2005a). Large composite fan (North Orava
fan) was developed across the Bystrica and Raca Unit in Babia hora and
Pilsko Mts. area during the Maastrichtian. Small fan of the Beskid Zy-
wiecki reached only the Raca Unit. During the Paleocene, North Orava
and Beskid Wyspowy fans occurred only in the Bystrica Unit. The most
eastern occurrence of the Szczawina type sandstone is the Grybéw area
(Oszczypko and Salata, 2005).

Deposits were not triggered by eustatic changes. Long-term eustatic
curve fluctuated 30-60 m in the Maastrichtian, 30-100 m in the Danian
and 30-70m in the Seladian (Haq, 2014). Together 18 fluctuations in
short-term curve with up to 130 m change were not as important for the
input of clastics as tectonic uplift. Short-term cycles have been mani-
fested in about 8 grain size cycles inside the Szczawina type sandstone
in the Raca Unit (Pivko, 1998).

The Fore-Magura and Szczawina Ridges were not as significant as
the Hostyn Ridge. Uplift of several ridges caused that material for the
Ropianka facies and Szczawina type sandstone was derived from sev-
eral sources (Figs. 5 and 13). Dispersed paleocurrent directions of the
Ropianka Fm. support this presumption (Fig. 4). Szczawina Ridge could
be considered as their main source. Facially the thin-bedded deposits
represent distal “flysch” facies (Fig. 3A) derived from the Szczawina,
Fore-Magura and Hostyn Ridges. Szczawina Ridge reflected in the ex-
amined terrain by paleocurrents to NW or SW (new measurements —
Fig. 5), to NW (Oszczypko and Salata, 2005; Ksiazkiewicz, 1966) or to
NE (Ksiazkiewicz, 1962; Rytko, 1992). Other types of sandstones (e.g.
glauconitic and biotite sandstones) also occur sporadically in Ropianka
Fm. except for Szczawina type sandstone. These could be the source of
contradictory paleocurrent directions (to S or SE). Locating the Szcza-
wina Ridge between Bystrica and Krynica unit seems to be the best
solution with current knowledge. Discussion and further information
will be necessary to solve this problem.

5.2.3. Late Paleocene — early Eocene

The global temperature and sea level have risen according to the
long-term curve in this period (Haq et al., 1987; Zachos et al., 2008).
The Magura Basin was affected by flexural subsidence (Poprawa and
Malata, 2006). The basin depth was approximately 2.5 to almost 4 km
(Poprawa et al., 2002; Kender et al., 2005). Mentioned conditions
culminated in the middle Eocene and they were represented by the
deposition of hemipelagic plain red mudstones and plain thin-bedded
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“flysch” facies mainly in the central and northern part of the Magura
Basin (starting with Ropianka Fm. through Labowa Fm. to Lower Be-
loveZza Mb.; Birkenmajer and Oszczypko, 1989; Tet'dk et al., 2016,
Figs. 14 and 20). Prevailing thin-bedded facies point out that the Fore-
Magura, Hostyn and Szczawina Ridges were not much active. The
supply of detritus from Szczawina Ridges terminated probably during
the late Paleocene.

Even in this relatively calm period, short-term eustatic decrease
enables crop out and erode the Fore-Magura and Hostyn Ridges.
Erosion has resulted in the deposition of the significant deep-sea fans of
Skawce (Ciezkowice) and Riecky type sandstones along the northern
edge of the basin. Likewise, Grybéw Ridge could supply Mrazovce Mb.
(defined in Kovacik et al., 2012; Bénova, 2018).

The southern edge of the Magura Basin formed a constantly active
thrust belt composed of the Pieniny and other tectonically affiliated
units. The mentioned units with various geological composition sup-
plied quartz-carbonate and exotic material for the Pro¢ Fm. as well as
for Milpos Breccia, Svodnica Fm. and Chabova Mb (Fig. 11). The Milpo§
Breccia contains recycled exotic clasts described above. Some klippen of
the Pieniny Klippen Belt originated as olistoliths fallen into the Pro¢
Fm. deposits (Plasienka, 2012, 2018; Tet'ak, 2016).

5.2.4. Early — middle Eocene

The global temperature and long-term sea level culminated in this
period (Haq et al., 1987; Zachos et al., 2008). The Magura Basin was
treated with continual flexural subsidence (Poprawa and Malata, 2006)
and its depth was approximately 2.5 up to 4 km (Poprawa et al., 2002).
The northern sources (Silesian, Hostyn and Fore-Magura Ridges) were
little active in material supply into the Magura Basin (besides Altle-
ngbach Fm. in Rhenodanubian Basin, Faupl, 1996). Typical facies was
the thin-bedded “flysch” facies of the Beloveza Fm. (Figs. 3B and 9).

The pressure of advancing Western Carpathian accretionary wedge
probably triggered uplift of the intrabasinal Southern-Magura Ridge,
which produced large amount of material for Magura type sandstone
fan. That was one of the largest and one of the longest producing deep-
sea fan of the Outer Western Carpathians, permanently until the early
Oligocene (Oszczypko et al., 2005a; Tet'ak et al., 2016). The Magura
type sandstone was interbedded with thin-bedded “flysch” facies
mainly at the distal part of fan (Zabava Fm. - Fig. 3C, D).

The sedimentation along the southern edge of the Magura Basin (in
Sari$/Grajcarek Unit and Vlara development of the Biele Karpaty Unit)
terminated gradually during the early and middle Eocene (e.g. Kovac
et al., 2016). It suggests that the mentioned units were incorporated
into the advancing front of the Western Carpathians accretionary wedge
(compare Figs. 15 and 16). The edge of the wedge gradually reached
the fan of Magura type sandstone.

5.2.5. Middle Eocene

A large part of the sediments preserved in the Magura Nappe de-
posited during the Middle Eocene. In the period, the long-term sea level
declined and global temperature with short-lived peak decreased (Haq
et al., 1987; Zachos et al., 2008). The Magura Basin was treated with
continual flexural subsidence (Poprawa and Malata, 2006) and its depth
was approximately 2.5 up to 4 km (Poprawa et al., 2002).

The conditions during this period were linked with a decrease in sea
level and uplift of the new source areas. Less mature sands of the
Magura type sandstone was derived from the intrabasinal Southern-
Magura Ridge, which was uplifted during the middle Eocene (Poprawa
and Malata, 2006). The extensive depositional fan of the Magura type
sandstone run into the basin and it flowed along the axis of the basin
(Figs. 16 and 17). The fan was composed of several lobes which mi-
grated laterally initially only in the southern half of the basin, but later
lobes prograded in to the northern part of the basin (Kyc¢era Mb.). Se-
dimentological analyses helped to interpret the complex system of
multiple lobes with channels, levies and sea plain facies (Cieszkowski
et al., 1998; Tet'dk, 2010; Tet'ak et al., 2016).
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During the Lutetian, the Fore-Magura Ridge started to supply the
material for massive quartz glauconitic sandstones (Pasierbiec and
Osielec type sandstones) often combined with calcareous mudstones to
marls (Lacko and Bystrica Mb. — Fig. 3E). Glauconite and large for-
aminifera originated from a shallow shelf of Fore-Magura Ridge, but a
high amount of calcareous mud was formed on a deeper shelf. The fan
was composed of several depositional lobes. The diversity of fan re-
flected in the numerous facies and in paleocurrent measurements. The
paleocurrent directions tend to the west or south-west up to south-east
(recent directions after Miocene rotation). The quartzy sandstones and
conglomerates with glauconite prevail in proximal part but the cal-
careous mud prevails in distal part. Some individual beds with mud-
stone dominance have a character of megaturbidites with thickness
over 10 m. The glauconitic sandstones are interbedded with the Magura

type sandstone in the south of the Bystrica Unit (Oravské Veselé Mb.).
The amount of glauconitic sandstones decreased during the Bartonian.
They have been partly pushed out by the Riecky sandstone fan supplied
from the Hostyn Ridge (Upper Luhacovice Mb.). The glauconitic
sandstones were interbedded with thin-bedded “flysch” facies espe-
cially at the edge of the fan (Vychylovka Fm., Hieroglyphic Fm.).

During the Lutetian, sedimentation of quartz-carbonate sandstones
was replaced with the glauconitic and Magura type sandstones in the
southwestern part from the Magura Basin (Biele Karpaty Unit; Tet'ak,
2016). Subduction of the southern edge of the Magura Basin has initiated
by accretion of the Biele Karpaty Unit and Rhenodanubian flysch into the
ALCAPA orogenic wedge during the late Lutetian (compare Kovac et al.,
2016; Faupl, 1996). The deposition in Rhenodanubian Basin and Biele
Karpaty Unit gradually finished from the SW (Faupl, 1996).
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5.2.6. Late Eocene to early Miocene

In the period, the global temperature and long-term sea level de-
creased (Haq et al., 1987; Zachos et al., 2008). The Magura Basin was
affected by continual flexural subsidence (Poprawa and Malata, 2006)
and its depth was approximately 2.5 up to 4 km (Poprawa et al., 2002).
Maximal depositional rates were achieved during the Priabonian, trig-
gered by tectonic movements (Poprawa et al., 2002, 2006), (Figs. 18
and 19). The front of the Western Carpathians accretionary wedge
progressed northwards and incorporated southern margin of the Ma-
gura Basin. After the middle Eocene, the Iiacovce-Kricevo Unit was
connected to the accretion wedge and Southern-Magura Ridge was
joined as well at the end of Eocene (Sotak et al., 2000; Olszewska and
Oszczypko, 2010; Salata and Oszczypko, 2010). Advancing edge of the
orogen and the subsiding northern part of the Magura Basin resulted in
a northward progradation of the glauconitic and Magura type sand-
stones fans. Large depositional fan of Magura type sandstone shifted

from Bystrica Unit to Raca Unit. The Magura type sandstone fan in-
terfingered with glauconitic sandstones fan on the Siary-Raca Units
border (Babise Mb.). The basin floor was disintegrated due to com-
pressional stresses during the middle Eocene. The increase of slump
sedimentation in the southern part of the basin was a consequence of
the collision of the southern Magura Basin edge with Western Car-
pathian accretionary wedge. An increased amount of slumps is typical
for the Racibor Fm. as well as Malcov Fm. (Fig. 3G, H; Tet'ak, 2010;
Tet'dk et al., 2016).

The Malcov Fm. was deposited in smaller limited sub-basins parallel
with the shortening Magura Basin from Priabonian to Rupelian (Figs. 3H
and 19). The period was influenced by the increase of compression. The
Magura Basin got the character of residual piggy-back basins above the
Outer Western Carpathian accretionary wedge up to the early Miocene.
Initiation of massive subduction of the southern edge of the Magura
Basin floor migrated from the west (Biele Karpaty Unit — Lutetian) to the
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Fig. 20. Palinspastic cross-section displays the tectonic position of the basins in the Western Carpathian orogenic system during the late Paleocene to early Eocene
(the cross-section line position is displayed in Fig. 14; based on Kovac et al., 2016; Picha et al., 2006)

east (Bartonian and Priabonian). The vanishing Magura subduction was 6. Conclusions
accompanied by continuous growth of the fold-and-thrust system with

maximum shortening during the Oligocene (Kovac¢ et al., 2016 and re- The main purpose of the research was the interpretation of the
ferences therein). Most of these youngest deposits were later removed by i i

erosion. Malcov Fm. deposits were preserved mainly in the decreased
areas such as the Orava

filling history and tectonic activity of the Magura Basin during the
Nowy Targ Basin and in a narrow tectonically
affected zone along the Pieniny Klippen Belt

Upper Cretaceous to Oligocene. Sedimentological and petrographic
methods were used for this purpose
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1) Sedimentary sequences of the Magura Nappe were divided into
fundamental lithofacies and lithotypes during detailed geological
mapping and sedimentological research in the Orava region.

2) A total of 1164 paleocurrent measurements were measured. They
were assigned to lithotypes and lithostratigraphic units.

3) Acquired paleocurrent and sedimentological data were integrated
with already published data especially from the central and western
part of Magura Nappe.

4) Presented palinspastic maps are the summary of cited and new
findings and, at the same time, the main benefit of the research. The
maps propose the interpretation of the geological, structural and
depositional history of the deep-sea “flysch” realm demonstrated on
the example of the Magura Basin during the Upper Cretaceous to
Oligocene.

5) From the discussion follows the proposition for the paleogeographic
reconstruction of the Magura Basin as well as the surrounding areas.
We propose the discussion about the character of the basin filling,
source areas, about the definition of regional paleogeographic terms
(e.g. Szczawina, Southern-Magura and Hostyn Ridges), about the
location of the Fore-Magura Ridge and its clear definition with in-
tent to avoid confusion with the Silesian and Hostyn Ridges.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.palaeo.2019.109250.
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