Sample ID	Sample	Colour	Symbol	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃ ^{tot}	MgO	CaO
KK1				38.23	11.53	13.20	12.11	12.37
KK2				39.22	11.76	15.55	7.15	11.99
KK3				42.36	13.63	12.41	9.15	11.98
KK4				41.69	14.52	12.48	7.07	11.84
KK5				40.60	14.65	13.27	8.36	12.44
KK6				44.88	13.03	11.88	5.94	11.81
KK7				52.78	17.80	5.58	1.79	4.28
KK8				45.19	15.78	10.43	4.71	8.07
KK9				33.84	7.88	11.67	15.28	16.13
KK10				39.89	9.99	11.54	15.71	13.04
KK11				33.11	7.74	10.84	16.88	18.59
KK12				41.25	14.48	13.01	7.90	12.66

	8	15	22	29	36	43
2	9	16	23	30	37	44
3	10	17	24	31	38	45
4	11	18	25	32	39	46
5	12	19	26	33	40	47
6	13	20	27	34	41	48
7	14	21	28	35	42	49

10	6 🗸	11 /
2 🛆	7 🖾	12
3 +	8 *	13
4 ×	9 🕁	14
5 🔷	10 🕀	15

Na ₂ O	K ₂ O	TiO ₂	P_2O_5	MnO	Cr ₂ O ₃	LOI	Ba	Sc
3.71	2.15	3.10	0.92	0.23	0.063	1.8	965	29
4.39	1.10	3.40	1.41	0.33	0.004	3.0	1028	21
3.13	1.57	3.17	0.73	0.18	0.043	1.1	717	27
3.03	1.75	3.73	0.77	0.20	0.021	2.3	791	26
2.92	1.53	3.22	1.09	0.22	0.019	1.2	591	27
2.62	1.67	2.62	1.23	0.23	0.008	3.6	541	17
3.79	7.97	1.45	0.32	0.15	0.002	3.7	1072	5
4.03	4.17	3.25	0.52	0.17	0.005	3.2	868	20
1.02	1.72	2.62	1.24	0.20	0.088	7.6	737	22
2.31	1.41	2.96	0.75	0.18	0.123	1.4	807	30
1.59	1.25	2.47	1.30	0.19	0.109	5.2	968	26
3.30	1.33	3.08	0.87	0.21	0.028	1.4	726	24

20 •

Nahrání dat do GCDkit:

 1) Vyplňte do tabulky číslo vzorku (Sample) od 1 do n, čís
2) Zkopírujte do schránky data z tabulky od Sample až po
2) Otevřete program GCDkit, klikněte na GCDkit --> Past Úkoly k zápočtu:
1) Vypočítejte Mg-číslo vzorků - Mg# = 100 · Mg/(Mg

Klikněte na Calculations --> Calculate new variable. Vepi 2) Určete horninový typ podle TAS diagramu

Klikněte na Plots --> Classification... V sekci VOLCANII 3) Určete geotektonické prostředí vzniku hornin dle po Klikněte na Plots --> Geotectonic...V sekci BASALTOID Výsledek:

4) Vytvořte spider-diagram chemického složení vzorků Klikněte na Plots --> Spider plots... --> ...for selected samj Číslo vzorku:

5) Vytvořte diagram závislosti Al₂O₃ na SiO₂ a nakopín Klikněte na Plots --> Binary plot. Napište proměnnou pro

Ni	Be	Со	Cs	Ga	Hf	Nb	Rb	Sn
146.5	1	55.6	0.4	20.9	6.7	122.2	53.6	2
24.7	4	37.4	1.0	24.5	14.7	167.7	21.3	3
97.6	2	45.5	0.4	18.6	5.8	86.5	34.9	2
40.9	4	39.7	0.6	21.8	8.2	77.7	64.1	3
53.6	2	42.5	0.2	19.7	6.3	88.1	37.3	2
26.9		31.4	1.2	16.7	7.0	95.6	47.5	2
4.9	2	9.4	1.8	20.9	9.7	107.0	221.7	2
12.4	2	27.8	1.2	20.8	8.2	82.4	118.2	2
316.5		52.5	0.9	13.4	5.5	128.5	48.6	3
338.7	1	59.3	1.0	13.7	5.7	83.9	51.0	2
335.6	1	60.1	0.8	11.7	4.6	133.8	46.6	1
55.7	3	43.4	0.4	19.2	6.1	90.0	32.0	2

slo barvy (Colour) a symbolu (Symbol) doplňte dle libosti (viz barevná škála a přehled symbolů pod tabul poslední prvek (včetně tučně vyznačeného prvního řádku, tj. B1:B13 až BA1:BA13) e data from clipboard, potvrďte OK

+ Fe^{tot})

šte do pole "mg" (s malým m), potvrďte OK, vyberte mg#, opět potvrďte (stisknout OK tolikrát, dokud se

ES vyberte TAS (Le Bas et al. 1986) a stiskněte OK tolikrát, dokud se nezobrazí diagram. V hlavním oku **měru Ti vs. Zr (Pearce 1982)**

S vyberte Pearce (1982) a stiskněte OK tolikrát, dokud se nezobrazí diagram. Odečtěte z diagramu výsled

i normalizovaného na primitivní plášť a určete, který vzorek má pozitivní anomálii pro olovo a uve ples, potvrďte OK. Z nabídky normalizací vyberte Primitive Mantle (McDonough & Sun 1995) a stisknět Koncentrace Pb:

rujte jej do Excelu

osu x (SiO2 - zde nutno dodržet velká písmena u prvků), potvrďte OK, totéž proveďte i pro osu y (Al2O3

Sr	Та	Th	U	V	W	Zr	Y	La
806.5	6.8	11.3	3.1	304	1.1	298.6	26.9	88.9
1580.1	10.1	13.8	3.9	275	1.8	616.3	41.5	125.0
937.4	4.5	6.9	1.5	289	0.7	232.7	24.8	57.5
1700.8	4.8	6.6	1.8	348	1.2	351.3	29.2	63.3
939.7	5.7	7.1	1.6	336	0.7	256.4	28.0	66.5
1234.0	5.7	8.0	2.0	269		289.5	29.9	72.8
756.9	5.2	18.4	5.2	141		461.0	22.9	80.4
889.5	5.1	10.0	2.5	341		340.3	22.5	56.8
866.1	8.5	16.1	3.9	252	1.6	250.6	29.5	123.8
873.4	5.1	6.4	1.6	308		223.8	18.8	52.1
1417.4	6.9	12.7	2.9	210	1.5	197.3	24.1	105.9
1138.8	5.3	6.9	1.5	315	0.5	242.5	27.4	62.2

lkou)

v programu nezobrazí výsledek). Výsledné hodnoty nakopírujte do tabulky a zaokrouhlete na celá čísla.

ně programu stiskněte Plot editing --> Identify points a kliknutím na jednotlivé body v diagramu zobrazíte

né geotektonické prostředí a vepište jej do pole níže.

d'te, jaká je tato koncentrace v ppm

e OK tolikrát, dokud se nezobrazí diagram. Najděte vzorek, jehož Pb anomálie je pozitivní (pík je směren

3) a stiskněte OK tolikrát, dokud se nezobrazí diagram. Klikněte pravým tlačítkem myši na diagram a vyb-

Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но
168.0	18.86	69.3	11.43	3.33	9.34	1.16	5.88	0.95
249.1	28.70	109.8	18.03	5.01	14.15	1.75	8.98	1.52
109.6	12.05	46.1	8.50	2.52	7.51	0.98	5.13	0.88
131.9	15.38	61.5	10.96	3.30	9.39	1.20	6.31	1.02
136.3	15.42	59.6	10.70	3.11	8.98	1.11	6.35	1.04
144.0	16.86	61.5	10.40	3.13	9.05	1.16	6.50	1.07
144.5	14.79	50.4	7.69	2.06	6.11	0.83	4.58	0.75
114.7	12.95	50.4	8.40	2.42	6.97	0.90	4.93	0.84
247.9	28.20	106.0	17.09	4.73	12.68	1.52	7.69	1.12
103.5	11.90	46.1	8.61	2.56	7.06	0.86	4.28	0.67
200.6	22.23	84.3	13.88	3.92	10.58	1.23	6.03	0.91
124.9	14.74	56.9	9.67	3.07	8.29	1.08	5.88	0.94

¿čísla vzorků. Výsledný horninový typ odečtěte z diagramu a vepište do tabulky.

n nahoru). V hlavním okně programu klikněte na Plot editing --> Identify points a v diagramu klikněte na

erte Copy as bitmap. Vykopírovaný graf vložte do pole níže.

Er	Tm	Yb	Lu	Мо	Cu	Pb	Zn	Mg#
2.46	0.31	1.89	0.26	0.6	48.4	1.6	63	
3.93	0.56	3.33	0.49	3.2	37.5	4.8	150	
2.29	0.28	1.89	0.25	2.4	70.2	6.1	90	
2.83	0.35	2.16	0.33	4.0	60.6	4.2	100	
2.86	0.38	2.15	0.34	2.7	47.4	2.0	88	
2.83	0.37	2.46	0.35	1.6	37.9	3.6	91	
2.31	0.32	2.30	0.33	0.3	9.3	15.0	77	
2.28	0.31	1.94	0.30	0.3	45.9	8.3	82	
2.66	0.32	1.84	0.25	0.4	51.5	4.9	86	
1.67	0.19	1.26	0.16	1.1	76.1	2.9	72	
2.18	0.25	1.49	0.19	0.9	47.6	3.5	65	
2.53	0.33	1.92	0.29	2.3	55.6	2.3	84	

příslušný bod pozitivního píku Pb. Červené číslo nad grafem představuje číslo vzorku, černé číslo vedle l

Rock type

bodu je příslušná koncentrace v ppm. Číslo tohoto vzorku a jeho obsah Pb vepište do polí níže.