EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání MINISTEHSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Geochemistry on the Earth's surface for analytical geochemists 3a. Carbonate system in the environment & Geochemistry of karst processes Tento učební materiál vznikl v rámci projektu Rozvoj doktorského studia chemie č. CZ.02.2.69/0.0/0.0/16_018/0002593 Outline topic • Importance • Carbonate system • Alkalinity and acidity • Geochemistry of karst processes — Equilibrium water-air-mineral — Karst formations Carbonate system Carbonate system • Based on C02 and derived compounds • Essential role in weathering • Greenhouse gas - impact on the climate • Organic matter - biosphere • Biogeochemistry CO* emission and consumption are kept * in rough balance by a negative feedback resulting from the temperature-dependence of silicate weathering. The feedback operates on a million-year time scale. (weathering) C02 + CaSi03 ^± CaC03 + SiO ^ C02 sources (emissions) ^ C02 sinks (metamorphism) Walker etal. (1981) Jour. Geophys. Res., 86, 9776. - 20% organic matter - 80% carbonate *oin scrubs C02 from atmosphere Snowball Earth.org Carbonates • C02(g) dissolves into water proportionally to the partial pressure in the air (PC02) C02Cg) <-> C02(aq) • C02reacts with water to form acid C02(aq) + H20(/) = H2C03(aq) • C02(aq) is about 600x more abundant, yet for simplicity we express all C02 as H2C03* H2CO^ (aq) = C02(aq) + H2C03(aq) Carbonic acid We can simplify the dissolution to: CO2(fl0 + H2O(Z) = H2CO5(ag) With the equilibrium constant _ aH2C03(aq) 2 ~ C02 Each PC02thus corresponds to a specific aH2C03* C02 content in water is often expressed as PC02 even if the gas phase isn't present Dissociation Carbonic acid dissociates to the 1st degree: H2C03 = HC03 +H+ Kl = aHCQ*aH+ = io-6-35 aH2CO^ And to the 2nd degree: HCO3 = COi" + H+ K2 = _E23-1_ = 10-10.33 aHC03 Speciation 0fH2CO3*/°HCO3-anC' Q,HC03-/Q,c032_ pH dependent and can be simplified to: = of = 10+6,35 aH+at 25 oC "HCOg Kl • H2C03* and HC03~are in equilibrium at 6.35 (neglecting C032~) Speciation Analogously for c/HC03_/aC032_ 3i£°£ = 5!L = 10+10,33 aH+at 25 oC aco|- K C032"and HC03"are in equilibrium at pH = 10.33 (neglecting H2C03*) Carbonate speciation In natural waters dominates HC03" 100 - u tal Dl 80 - of toi 60 - 'cent 40 - 01 Cl. 20 - 0 pH FIGURE 3.15 Relative distribution of dissolved inorganic carbon species in pure water as a function of pH, at 25°C. Adapted from Clark (2015) Example 1 • What will be the pH of water in equilibrium with atmospheric C02at 25 °C, assuming ideal behavior and no other dissolved substances? • The partial pressure of C02 is 4 x 10~4 • k = in-i,47 • K^IO"6'35 • Based on the charge balance [H+] = [OH"] + [HC03-] +2[C0321 Calcium carbonates CaC03(s) = CO§- + Ca2+ • The solubility product is Kc = aCa2+ aC02- = 10-8'48 calcite (25 °C) Ka = aCa2+ aC02- = 10~8'34 aragonite (25°C) • We can solve the systems by adding the appropriate equations to the carbonate syste - KC02, Klr K2, KW/ Kc/ PEN and one other condition • Fixed Pc02for an open system or sum of carbonates for closed system Example 2 What will be the pH of water in equilibrium with atmospheric C02and calcite at 25 °C, assuming ideal behavior and no other solutes? • 6 unknowns (PC02, [H2C03*], [HC03-], [C032-], [Ca2+] and [H+]) • 6 equations (PC02, Kco2' Kcand charge balance) P = in-3-4 rC02 ■LU Charge balance: [H+]+2[Ca2+]=[HC031 +2[C0321+[OH-] — At neutral pH simplified to 2[Ca2+] =[HC03-] - By substituting the equations, we express [H+] Example 2 What will be the pH of water in equilibrium with atmospheric C02and calcite at 25 °C, assuming ideal behavior and no other solutes? • 6 unknowns (PC02, [H2C03*], [HCO,-], [CO,2"], [Ca2+] and [HI) • 6 equations (PC02, KC02, K1; K2, l^and charge balance) P = i n-3-4 rC02 ±KJ Charge balance: [H+]+2[Ca2+]=[HC031+2[C032-]+[OH-] - At neutral pH simplified to 2[Ca2+] =[HC03"] - By substituting the equations, we express [H+] - [H+] = 10"8 2 pH = 8.2 Weathering of carbonates GEOCHEMISTRY OF KARST PROCESSES The importance of karst • Landscape system • Cultural-economic - Tourism, aesthetic significance - Source of raw materials (limestone, iron ore, wood) - Agriculture - Groundwater collectors • A source of information about the environment in the geological past Source: http://www.slovenia-explorerxom/wp-co^ Predjarná Castle (SLO) Karst Geological formation A landscape formed by the dissolution of the bedrock - Mostly carbonate rock, but evaporites as-well Key role of CO, Source: http://wordsmith.org/words/images/karst_large. Karst (SLO) 9. 10. 11. architektonické památky zříceniny hradů technické památky archeologické památky Chrám P. Marie Bolestné Jeskyně Kůlna Hrad Holštejn Větrný mlýn Ostrov u Macochy Hrad Blansek Větrný mlýn Rudice Huť Františka Jeskyně Býčí skála Chrám Jména P. Marie Jeskyně Pekárna Hradisko Chochola Kňinský ADAMOV S NAUČNÉ STEZKY 1. Sloupsko-šošůvské jeskyně 2. Macocha stezka Jana Šmardy 3. Jedovnické rybníky Rudické propadání 4. Cesia železa 5. Josefovské údolí 6. Údolí Říčky 7. Hády a Údolí Říčky Křtinský p. Březina B VEŘEJNOSTI PŘfSTUFWIl JESKYNĚ A Sloupsko-šošůvské jeskyně B Jeskyně Balcárka C Punkevní jeskyně, propast Macocha D Kateřinská jeskyně E Výpustek □NÁRODNÍ PŘÍRODNÍ REZERVACE(NPR) NÁRODNÍ PŘÍRODNÍ PAMÁTKY (NPP) 1. NPR Vývěry Punkvy NPP Rudické propadání NPR Habrůvecká bučina NPR Býčí skála NPP Jeskyně Pekárna Říčka Hosten ice Říčka 6. NPR Hádecká planinka přírodní mzBmACE (ipr} 1. PR Sloupsko-šošůvské jeskyně 2. PR Bílá voda 3. PR Balcamva skála - Vintoky 4. PR Mokřad pod Tipečkem 5. PR Dřínová 6. PRUVýpustku 7 PR Březinka 8. PR Čihadlo 9. PR Údolí Říčky 10. PR Velký Hornek 11. PRUBrněnky Chráněná krajinná oblast MORAVSKÝ KRAS Moravian karst Karst phenomena Dissolved Joint Subterranean River Cave Crack In Limestone Cavern River Stream Disappears Stalagmite / Stalactite Limestone Column\Underground Lake Surface landforms Surface landforms Underground phenomena Corrosion Cave sediments Cave deposits: - allochthonous (sand, clay) - autochthonous (cave sinters - speleothems) Water in karst An ideal path of water through karst Infiltration Flow through soi Water retention in epikarst Flow along fissures Discharge into the cave Drainage into phreatic zone Karst processes • Soil C02 dissolution H20+C02^^ H2C03* • C02 degassing Soil & Epikras • Carbonate rock dissolution CaC03+H2C03 1—- Ca2++2HC03- • Calcite precipitation ^ve Open/closed system CaC03 + H20 + C02 = Ca2+ + 2HC03" • Open system: PC02 of the water remains constant, C02 from air replaces C02 consumed by dissolution • Closed system: The ammount of calcite solution can dissolve is limited by the CO 2 initially present in the water Dissolution Closed system Equlibrium water Only a small amount of limestone dissolves. Dissolution water flows, it can dissolve limestone. • The amount of dissolved calcite depends critically on the availability of the gas phase with C02 at dissolution HjC03 CONCENTRATION (mmol/liter) 0.0345 _ 0 345_345_ 34,5 C0? PRESSURE (aim.) Fig. 2.—Changes in composition of carbonated water during equilibration with calcite at 25° C. in the presence and in the absence of a vapor phase. Curves I and II describe the behavior of a solution which was originally in equilibrium with a vapor phase with a C02 pressure of 0.10 atm., curves III and IV describe the behavior of a solution that was originally in equilibrium with a vapor phase with a C02 pressure of 0.01 atm. Example 3 • Pure water in equilibrium with PC02 = 10~2 a) How much calcite will be dissolved in a closed system? 6 unknowns (PC02, [H2C03*], [HCCy], [C032"], [Ca2+] a [H+]) 6 equations (KC02/ Kl7 K2, Kc, Ch. Bal. a IC02) ZC02 = ZC02° + IC02 diss IC02= [H2C03*]° + [Ca2+] We assume negligible [C032~] in IC02and get [H2C03*]° = [HCO3I + [H2C03*] - [Ca2+] Example 3 • Pure water in equilibrium with P C02 = 10 ~2 a) How much calcite will appear in a closed system? 6 unknowns (P C02, [H 2 CO 3 * ], [HCO 3-], [CO 32"], [Ca 2+ ] and [H+]) 6 equations (K C02, K 1, K 2, K c, PEN and I CO 2) IC02 = IC02° + IC02diss ZC02=[H2C03*]°+[Ca 2+] We assume negligible [CO 32~] in I CO 2and obtain [H 2CO 3*] ° = [HCO3-] + [H 2CO 3*] - [Ca 2+] Substituting the remaining equation gives [Ca2+] = 3.34x 10"4mol/l Approximately 33.4 mg of calcite is dissolved per liter of water Example 3 • Pure water in equilibrium with P C02 = 10 ~2 b) How much do you appear in the open system? - A system we have already dealt with 6 neznámých (PC02, [H2C03*], [HC03"]# [C032-], [Ca2+] a [H+]) 6 rovnic (PC02/ KC02, K1# K2, Kc and Ch. Bal.) P = in-2 rC02 ±u We express [Ca2+] from the equations and substitute the parameters [Ca2+] = 1,39 x 10"3 mol/L Approximately 139 mg ofcalcite dissolves per liter of water Schematics of karst dissolution Precipitation Infiltration Percolation Dissolving C02from the soil Dissolving limestone (Cave) - Degassing and speleothem growth Discharge By chrislm - Own thesis , CC BY 3.0, https://c0mm0ns.wikimedia.0rg/w/index.php?curid=S462400 Karst processes CaC03 + H20 + C02 = Ca2+ + 2HC03- r Very fast reaction Always in equilibrium 1 T Very slow reaction 2^w3 H,0 + CO, «-> H,CO, <-> HCO,- + H+ C032- + H+ + Ca2+ 1 a CaC03(calcite) Very slow reaction Diagram of calcite dissolution Bulk Solution Surface concentration as f(c - cs)... flux released from surface as... constant aD (cs - cB)... diffusional flux aD... combined diffusion coef. and thickness of concentration boundary FS=FD Steady state Calcite surface processes 1. CaC03+H+ —b-+Ca2+ +HCQ 2. CaC03 + H2CO*3 —Ca2+ + 2HCO' 3- CaC03 + H2O^^Ca2+ + C02' +H+ ->Ca2+ +HC03+OH 4. Ca2++HCO~^^>CaC03 + H+ o PWP Equation (Plummeretal. 1978) ► Dissolution rate at the surface Fpwr — ki(H+)s + k2 (H2C03*)J +|k3-k4(Ca2+)s(HC03-) Reaction-transport control Surface reaction control pH<5 pH>7 cn cn _2 D- pH dependent pH independent Dolomites CaMg(C03)2(s) = CO!" + Ca2+ + Mg2+ • The solubility product is KD = aCa2+aMg2+aC02- = 10~17-2 (25 °C) • The value of KD is uncertain and can display very variable values for dolomites of different origins • Very slow dissolution under standard conditions and almost no growth (highly unsaturated/supersaturated solutions) Formation of dolomite Dolomite is often formed by alteration of calcite CaMg(C03)2 + Ca2+ = 2CaC03 + Mg2+ _ aMg2+ KCD --- aCa2+ In solutions where the Mg/Ca ratio is greater than K CD/ dolomite is more stable than calcite and vice versa The process is kinetically very slow Calcite changes to dolomite only under large excess of magnesium Dissolution of dolomite • Analogous to calcite • Significantly slower • Extreme times needed to reach "equilibrium" (thousands of years) — Significant uncertainty in equlibrium values • At low temperatures, based on kinetics and thermodynamics, it should dissolve incongruently Magnesium calcite Ca(1_x)MgxC03(s) = C0§" + (1 - x)Ca2++xMg2+ • Low magnesium Mg-calcite (<5%) • High magnesium Mg-calcite (>10%) - recent deep-sea sediments • All high-magnesium calcites are unstable (transformation to dolomite and low-magnesium calcite), but under surface conditions this is inhibited by dolomite growth kinetics • Mg-calcite in seawater more stable than pure calcite Dissolution of Mg-calcite Equilibrium with solution definable as cation exchange or dissolution - As a result, both processes must be in balance The correctness of the approaches is not clarified, the relationships are very complex The determination of Ks complicates the combination of congruent and incongruent dissolution o 3.5E-03 E £ 3.0E-03 CaTot [mol L"1] EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TELOVÝCHOVY Tento učební materiál vznikl v rámci projektu Rozvoj doktorského studia chemie č. CZ.02.2.69/0.0/0.0/16_018/0002593 Resources • Unmarked images are copyrighted or taken with permission from doc. Zeman and doc. Faimon Clark, I. (2015). Ground water Geochemistry and Isotopes . CRC Press . 442 p. ISBN 978-1-4665-9174-5 ( e-book - PDF) • Drever, J. (1997): The geochemistry of natural waters: surface and underground waters environment. (I have a book from our library with me on long-term loan) • Dreybrodt, W. & Eisenlohr, L. (2000): Limestone dissolution great rates _ environment. - In: Klimchouk, AB ( ed .): Speleogenesis development of karst aquifers . - National speleological society. Huntsville, Alabama. 527 p - , P. (2014). Environmental and Low Temperature Geochemistry. John Wiley and Sons . 402 p. ISBN 978-1-4051-8612-4 ( pbk •) - Appelo, C. A. J., & Postma, D. (2005). Geochemistry groundwater and pollution : (2nd ed.). Leiden: • Holland HD, Kirsipu TV ., Huebner JS, Oxburgh UM (1964) On some aspects of the chemical evolution of cave waters. J Geol 72:36-67. doi : 10.1086/626964 • Plummer LN, Parkhurst DL, Wigley TML (1979) A critical review of the kinetics of calcite dissolution and precipitation. • Plummer LN, Wigley TML, Parkhurst DL (1978) Kinetics of calcite dissolution in C02-water systems at 5 degrees to 60 degrees C and 0.0 to 1.0 atm C02. Am J Sci 278:179-216. doi : 10.2475/ajs.278.2.179 • Pracný P, Faimon J, Všianský D, Kabelka L (2017) Evolution of Mg/Ca Ratios during Limestone Dissolution Under Epikarstic Conditions. Water Geochemistry 1-21. doi : 10.1007/sl0498-017-9313-y • Pracný P, Faimon J, Kabelka L, Hebelka J (2016) Variation of carbon dioxide in the air and scapular waters of Punkevni caves (Moravský karst, Czech Republic). Carbonates and Evaporites 31:375-386. doi : 10.1007/sl3146-015-0259-0 • Stumm , W. and Morgan, J. (1995): Water chemistry: chemical equilibria and rates in natural waters.