EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání MINISTEHSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Chemical methods in geology i. Introduction to geochemica modelling Tento učební materiál vznikl v rámci projektu Rozvoj doktorského studia chemie č. CZ.02.2.69/0.0/0.0/16_018/0002593 Modeling • Regardless of the software used, it is necessary to have an idea of what I am doing and what do the results mean © • The goal is to learn how to model sensibly -so that we get valid and useful results • There are a variety of options and tools -learn basic rules and principles that are useful regardless of the tool used Model • Model - a construct describing real conditions - Conceptual model - a qualitative approximation of the system (used to understand the overall nature - how we think the system works) — Mathematical model - a mathematical construct based on governing equations and boundary/initial conditions that we assume describe the environment • Numerical model - approximate solution of the mathematical model (usually using a computer) ConceptiMniodeJ pore Pracný, P., Faimon , J., Všianský, D., Kabelka, L., 2017. Evolution of Mg/Ca Ratios During Limestone Dissolution Under Epikarstic Conditions . Aquat. Geochemistry 23,119-139. https://doi.org/10.1007/sl0498-017-9313-y Conceptual model Rainfall + P-E Correction Mathematical models • Include the quantitative expression of processes • In order to evaluate the model, we need to solve the system of equations • Solution is possible in two ways - Analytical solution - exact solution of the mathematical model, applicable to simple problems (e.g. pH calculations in a carbonate system) - Numerical solution - an approximate solution, typically using a computer, applicable even to very complex models Mathematical model 0 200 400 600 800 Julian Day Fig. 8, Equivalent diagram to Fig. 6 for site F5, 0.9 Mathematical mode 0.8 0.7 0.6 o o ° 0.5 8 0.4 co 0.3 0.2 0.1 0.0 y = 0.0190x-0.0942/ >t J # y = 0.0205X + 0.0486/ R2 = 0.37 0 10 20 • Vil Lmst. rock * Laz Lmst. rock • Vil Lmst. rock (WDS) a Laz Lmst. rock (WDS) o Exp. dissolution of Vil Lmst. Exp. dissolution of Laz Lmst. <> Regular dripwater ♦ Anomalous dripwater Model evolution 30 40 Mg/Ca x 1000 50 60 70 Mathematical model Geochemist's Workbench • Paid software (subscription) • Graphical interface - more user-friendly • Speciation, diagrams, reactions, kinetics, spreadsheet... • Community edition with limited functionality (useful especially for speciation and diagrams) — Annual license SpecE8 module • Speciation calculations for solutions (similar to the SOLUTION command in PHREEQC) • Input solution composition (directly species) -software calculates the distribution of other species, saturation, etc. • Interchange of species = "swapping" (e.g. hTfor pH) • Function „explain" • Connectivity with Gplot - direct data plotting in diagrams (e.g. Piper) Model 1: Speciation in seawater Table 9. Seawater composition. [Concentration is in parts per million (ppm) unless specified otherwise] Analysis PHREEQC notation Concentration Calcium Ca 4123 Magnesium Mg 1291.8 Sodium Na 10768.0 Potassium K 399.1 Iron Fe 0.002 Manganese Mn 0.0002 Silica, as SiOj> S: 4.28 Chlonde Cl 19353.0 CO Alkalinity as HCO/ Alkalinity' 141.682 o Sulfate, as S04: S(6) 27120 CNl O Nitrate, as NOV N(5) 0.29 npl Ammonium, as NH4~ NC-3) 0.03 Q_ < Uranium U 0.0033 do pH, standard units pH 8.22 +-» to pe. unitless pe 8.451 hi i nu Temperature, °C temperature 25.0 _^ i_ Density, kilograms per liter density 1.023 05 CL • Use the SpecE8 module to find saturation index values for minerals dissolved in seawater • Which mineral is it most supersaturated with? • In what form will carbonates be dominant? • For raw data see the file Data_pro_modely.xlsx Speciation in seawater In the publication Edited for input into GSS Table 9. Seawater composition. [Concentration is in parts per million (ppm) unless specified otherwise] Analysis PHREEQC notation Concentration Calcium Ca 412.3 Magnesium Mg 1291.8 Sodium Na 10768.0 Potassium K 399.1 Iron Fe 0.002 Manganese Mn 0.0002 Silica, as S1O2 Si 4.28 Chloride CI 19353.0 Alkalinity as HC03" Alkalinity 141.682 Sulfate, as S042~ S(6) 2712.0 Nitrate as NOV N<5) 0.29 Ammonium, as NH4- N(-3) 0.03 Uranium U 0.0033 pH, standard units PH 8.22 pe, imitless pe 8.451 Temperature, °C temperature 25.0 Density, kilograms per liter density 1.023 Unit Seawater PH PH Fr Fr 8.451 mg/kg 412.3 Mg++ mg/kg 1292 On+ H mg/kg ^| 10768.0 ^| K+ mg/kg 399.1 HC03-^^H mg/kg 141.7 S04- mg/kg 2712 Cl- mg/kg 19353.0 N03- mg/kg 0.29 Fe++ mg/kg 0.002 Mn++ mg/kg 200E-6 Si02(aq) mg/kg 4.28 c:\user5\a dminVdisk google\vyuka\g9311 geochernie excgenni'ch procesu\materialy\2Q20\Q9_gwb File Edit Run Config Window Help Basis Command Run Constraints on initial system H20 1 free kg w solvent Ca++ 412.3 ▼ mg/kg Mg++ 1292 mg/kg Na + 10768 nng/kg K+ 399.1 nng/kg W HC03- 141.7 mg/kg S04- 2712 T mg/kg T Cl- 19353 ring/kg N03- .29 ▼ mg/kg T Fe++ .002 W mg/kg W Mn++ 2e-4 mg/kg Si02(aq) 4.28 ▼ mg/kg H + 8.22 PH e- 0 02[aq) 8.451 T pe add Temperature 25 T °C > Model 2: Groundwater speciation • By interacting with the rocks, groundwater acquired a specific composition. a) What complexes and species will be in the water? b) What will be the saturation states of the various minerals? • Same input as Model 0 for PHREEQC Phreeqc input: TITLE Speciation of water SOLUTION 1 Temp 15 pH 6.05 units mol/L Al 1E-6 Si 1E-5 Na 1.3E-5 CI 5E-5 Ca 5.5E-4 S 3.5E-4 C 1E-3 END GSS module • Spreadsheet Manager (i.e. from the same rank as Excel) • Enables convenient work with geochemical data, their conversions, calculations and export to graphic outputs Model 3: Karst water mol/L Mg 6.17E-05 5.76E-05 Ca 1.31E-03 3.50E-03 S04-- 4.07E-04 5.53E-04 Cl 2.26E-04 1.97E-04 Alkalinity as HC03- 1.92E-03 6.02E-03 Sr 9.99E-07 1.18E-06 Na 8.70E-05 9.13E-05 K 1.82E-05 1.92E-05 N03- 1.05E-04 5.97E-05 Si 8.76E-05 9.62E-05 PH 8.08 8.09 Temp 7 • Enter the following data into the GSS and calculate the saturation indices for calcite and dolomite, the total content of dissolved substances (total dissolved solids TDS) and charge imbalance in %. • Data - Calculate 1 ■ 2 • Sample ID ► TC CP Mg++ * mo ar ► 61.7E-6 57.6E-6 Ca~ * mo ar ► 0.00131 0.0035 S04" * mo ar ► 407E-6 553E-6 cr n T mo ar ► 226E-6 197E-6 HC03" I mo ar 0.00192 0.00602 sr A mo ar 999E-9 1.18E-6 Na+ ▼ mo ar 87E-B 91.3E-B K+ ♦ T mo ar ► 18.2E-6 19.2E-6 N03" I mo ar 105E-6 59.7E-6 Si02(aq) ^ mo ar 87.6E-6 96.2E-6 PH ° 8.08 8.09 Temperature C 7 8 Model 4: Water from sanitation • The following slide shows water analyzes from the area of Stráž pod Ralskem, where remediation is taking place after uranium mining by leaching • Input water solution to GSS, calculate charge balance and TDS • Plot the data in diagrams - Piper — Column • Graphs-Piper Příloha 6. Parametry vybraných vod upravené pro použití v modelu a parametry po nábojovém vyrovnání Původní složení upravené pro GWB 1 6 8 Cenoman 1 6 8 Cenoman pH U 1,9 3,68 7,63 1,10 1,90 3,68 7,63 Eh mV 407 273 407 112 744 Electrical conductivíty uS/cm 4560 1087 79,7 327 7556 712 308 TDS mg/l 90380 19310 764 286 71138 15040 564 292 AI+++ mg/1 8100 1740 26,83 0,025 8230 1747 26,84 0,025 Ca++ mg/1 231 198 72,13 48,1 235 199 72,14 48,1 Cl mg/l 16 7,5 7,2 1,9 16 7,5 7,2 1,9 h mg/l 460 79 4,88 0,3 467 79 4,88 0,3 Fe++ mg/l 1230 261 7,90 5,E-05* 1250 262 7,90 5,E-05 HC03-- mg/l l,E-30 l,E-30 l,E-30 210 l,E-30 l,E-30 l,E-30 226,683 HP04-- mg/l 152 40 0r078 l,E-30 162 41 0,079 l,E-30 K+ mg/l 151 1G 4,42 4,6 153 1G 4,42 4,6 Mg++ mg/l 67 36,5 10,82 10,2 68 36,6 10,82 10,2 Mn++ mg/l 14 2,1 3,39 0,074 14 2,1 3,39 0,074 Na+ mg/l 18 5,2 7,69 6,1 18 5,2 7,69 6,1 NH4+** mg/l 1163 257 8,86 0,19* 1182 258 8,86 0,19 02(aq) mg/l l,E-30 l,E-30 0,62 0,2 3,E-13 l,E-03 -4.E-17 0,2 S04-- mg/l 52000 12160 473 0,3 62318 12j8S 415 0,3 Zn++ mg/l 59 63 0747 0,01 60 63 0,747 0,01 H+ mg/l 278 34 0 0,153 Složení po nábojovém vyrovnání 00 O _o> Q_ Pozn.: * hodnota nastavena na detekční limit. **po užité hodnoty NH4+ zahrnují původní koncentraci NH4 a koncentraci NO^- přepočtenou na NH4+. 1 ▼ 2 "I 3 #| 4 A T j T I T Sample ID Vodal Voda 6 Voda 8 Cenoman Al"" v mg/1 8230 1747 26.84 0.025 mg/l 235 199 72 14 48.1 er D mg/l 16 7.5 7.2 1.9 F " mg/l 467 79 4.88 0.3 Fe~ mg/l (as Fe) 1260 262 7.9 50E-6 HCO3 l mg/l 1E-30 1E-30 1E-30 226.7 HPO4" z mg/l 162 41 0.079 0.001 mg/l 153 16 4.42 4.6 Mg~ t mg/l 68 36.6 10.82 10.2 mg/l 14 2.1 3 39 0.074 Na+ T T" mg/l 18 5 2 7.69 6.1 NH4+ mg/l 1182 258 8.86 0.19 S04~ * mg/l 62318.0 12588.0 415 0.3 Zn" A mg/l 60 63 0.747 0.01 PH ° 1.1 1.9 3.68 7.63 Eh A mV 273 407 112 744 H+ T molal 0.2842 0.0337 -0.01252 150E-6 H+ ♦ molal 0.2842 0.0337 -0.01252 150E-6 Act2 module • Used to construct diagrams - speciation , activity, Eh-pH... • We can input data from GSS and plot it as points in diagrams • Using the "suppress" command, we can suppress phases and species that will not occur or for some other reason we do not want in the diagram Model 5a: Carbonate speciation • Construct the Eh-pH diagram for HC03~ speciation • Activity of HCO3- = 3xl0"3 mol/L • Plot data from Stráž (Model 4) • File - Open - Scatter Data Model 5b: Al speciation • Construct an Eh-pH diagram for aluminum • Al activity = 1CT7-8 mol/L Model 5c: Speciation of As • Construct an Eh-pH diagram for arsenic • As activity = 10~6 mol/L • In the presence of sulfur with an activity of 10"2 mol/L Model 5d: Speciation of Fe • Fe2+activity = 1CT6 • Suppression of unwanted species with "suppress" • Config - Suppress Other modules • Rxn - balance of reactions • React - reaction models • Modules for the construction of other types of diagrams (P-T, phase) • Reaction transport modeling PHREEQC • Freely available in versions for Windows, Mac and Linux • Coding • Speciation, interaction, mixing, kinetics, reaction-transport calculations... • Possibility of programming in Basic, connection with R, Matlab, etc. • There is a GUI version for Windows (Phreeqci) Possible problems • All numbers must be entered with a decimal point - commas will not work! • Output path issues (diacritics in folder names) - issue especially with PHREEQCi Modeling • Regardless of the software used, it is necessary to have an idea of what I am doing and what I am finding out © • A geochemical model is a mathematical model - In order to evaluate the model, we need to solve the system of governing equations - The solution is possible in two ways 1. Analytical solution - exact solution to the mathematical model, applicable to simple problems (last week's pH calculation) 2. Numerical solution - an approximate solution, typically using a computer, applicable even to very complex models Types of geochemical models 1. Speciation modeling 2. Water mixing 3. Modeling of direct interactions a) Equilibrium b) Irreversible processes 4. Inverse modeling 5. Reaction-transport modeling 6. Kinetic modeling 7. And more... Speciation models • Evaluation of the composition of the water sample - Distribution of total concentrations on the activities of individual species in solution - E.g. distribution of total carbonates - It only counts components and species defined in the database (it may be necessary to define new ones) - It does not consider kinetics - only a thermodynamic assessment of stabilities - Pure mineral phases only (no solid solutions, impurities or non-ideal stoichiometry) - Generally a problem with organics (not enough thermodynamic data) Model 0 • By interacting with the rock, groundwater acquired a specific composition. a) What complexes and species will be in the water? b) What will be the saturation states of the various minerals? Phreeqc input TITLE Speciation of water SOLUTION 1 Temp 15 pH 6.05 units mol/L Al 1E-6 Si 1E-5 Na 1.3E-5 CI 5E-5 Ca 5.5E-4 S 3.5E-4 C 1E-3 END Direct interaction models • Predicts final composition of water after interactions (with other phases or after the reaction of components in water). • Again, it does not assess kinetics, it is based purely on the thermodynamics of processes. • EQUILIBRIUM_PHASES command - Phase name, saturation index (SI) and amount in moles - SI = 0 ... the system will calculate to balance - In the case of gases, it is the log of fugacity Model 1 What is the pH of pure water in equilibrium with atmospheric C02? T = 25°C PCO2 = 4xl0"4 -Log PC02=-3.4 — When calculating the equilibrium with gases, we enter the value of the logarithm of the partial pressure (orfugacity) and then we can also enter the molar content (how many moles are available; the default value is 10) Model 2 What is the pH of pure water in equilibrium with atmospheric C02and calcite (open system conditions)? T = 25°C PCO2 = 4xl0-4 -Log PC02=-3.4 calcite = 0 - When balancing with minerals, we enter the value of the saturation index, and then we can also enter the molar content (how many moles are available; the default value is 10) Model 3 What is the pH of pure water in equilibriu with atmospheric C02and calcite (closed system conditions)? T = 25°C PCO2=4xl0"4 -Log PC02=-3.4 S'calcite = 0 Model 3b What is the pH of pure water in equilibrium with atmospheric C02and calcite (closed system conditions) if the temperature drops at the same time before contact with calcite? T = 8°C PCO2 = 4xl0"4 -LogPc02=-3.4 S'calcite = 0 Model 4a • We have water of given initial composition: • pH = 7.3 • T = 25°C • Units mol/L • Ca = 1.64xl0-3 mol/L • Alkalinity = 3.30xl(r3 eq/L as HC03" • What will be the saturation with respect to calcite? • What will the "partial pressure of C02 in water" be? — (The partial pressure of C02 above the water with which the dissolved carbonates would be in equilibrium). Model 4b l/l/e have water of given initial composition: T = 25°C Ca = 1.64xlcr3mol/L Alkalinity = 3.30xlO-3 mol/L as HC03" pH = 7.3 The solution will establish equilibrium with atmospheric PC02 PC02 = 4xl0"4 - Log PC02=-3.4 What will be the saturation index value with to calcite? Model 4c We have water of given initial composition: T = 25°C Ca = 1.64xl0"3 mol/L Alkalinity = 3.30xl0"3 mol/L as HCO3-pH = 7.3 The solution establishes equilibrium with atmospheric PC02 PC02 = 4xl0-4 - LogPc02=-3.4 • The solution will also balance with calcite (ie, excess calcium and carbonates will precipitate). ^'calcite u • What will be the concentrations of Ca 2+, total carbonates and the resulting pH? Other models according to the samples in the PHREEQC documentation Solution to Model 1 Title Model 1 Solution 1 Temp 2 5 Equilibrium_phases C02(g) -3.4 end Solution to Model 2 Title Model 2 Solution 1 Temp 2 5 Equilibrium_phases C02(g) -3.4 Calcite 0 end Solution to Model 3 Title Model 3 Solution 1 Temp 2 5 Equilibrium_phases C02(g) -3.4 Save Solution 2 end Use Solution 2 Equilibrium_phases Calcite 0 end Solution to Model 3 Title Model 3b Solution 1 Temp 2 5 Equilibrium phases C02(g) -3.4 Save Solution 2 end # here we enter a lower temperature for further interaction Reaction Temperature 8 Use Solution 2 Equilibrium phases Calcite 0 end Solution to Model 4a Title Model 4a Solution 1 Temp 2 5 Equilibrium_phases C02(g) -3.4 Save Solution 2 end Use Solution 2 Equilibrium_phases Calcite 0 end Solution to Model 4b Title Model 4b #we are interested in saturation with respect to calcite and C02 Solution 1 Temp 2 5 pH 7 . 3 Units mol/L Ca 1.64e-3 Alkalinity 3.30e-3 as HC03- Save Solution 1 end # water in next step attains balance with atmospheric C02 Use Solution 1 Equilibrium_Phases C02(g) -3.4 end Solution to Model 4c Title Model 4c # we are interested in saturation with respect to calcite and C02 Solution 1 Temp 25 pH 7.3 Units mol/L Ca 1.64e-3 Alkalinity 3.30e-3 as HC03- Save Solution 1 end # water in next step attains balance with atmospheric C02 Use Solution 1 Equilibrium_Phases C02(g) -3.4 Save Solution 2 end # in the last step water precipitates calcite, with respect to which it is supersaturated Use Solution 2 Equilibrium_Phases Calcite 0 C02(g) -3.4 end EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TELOVÝCHOVY Tento učební materiál vznikl v rámci projektu Rozvoj doktorského studia chemie č. CZ.02.2.69/0.0/0.0/16_018/0002593 Resources • Parkhurst, DL, and Appelo, CAJ, 2013, Description of input and examples for PHREEQC version 3 — A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: US Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at http://pubs.usgs.gov/tm/06/a43/. • SCHRIMPELOVA, Kateřina. A Geochemical Model of the Groundwater of the Guardian Area Leach Fields [online]. Brno, 2018 [cit. 2020-12-01]. Available from: . Thesis. Masaryk University, Faculty of Science. Supervisor doc. RNDr. Josef Zeman, CSc.