Tutorial 10—Global Analysis

1. Suppose $(M, g) \subset (\mathbb{R}^3, g) = (\mathbb{R}^3, g^{\text{euc}}) = (\mathbb{R}^3, \langle -,-\rangle)$ is a surface in Euclidean space. Let $u: U \to u(U)$ be a local chart for M with corresponding local parametrization

$$
v = u^{-1} : u(U) \to U.
$$

With respect to the frame $\{\frac{\delta}{\partial x}$ $\frac{\partial}{\partial x^1}$, $\frac{\partial}{\partial x^2}$ of $T \mathbb{R}^2$, we can write v^*g and v^*II as matrices

$$
\begin{pmatrix} E & F \\ F & G \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix},
$$

where

$$
E = g(\frac{\partial}{\partial u^1}, \frac{\partial}{\partial u^1}) \circ v \quad F = g(\frac{\partial}{\partial u^1}, \frac{\partial}{\partial u^2}) \circ v \quad G = g(\frac{\partial}{\partial u^2}, \frac{\partial}{\partial u^2}) \circ v,
$$

and

$$
\tilde{E}=II(\frac{\partial}{\partial u^1},\frac{\partial}{\partial u^1})\circ v \quad \tilde{F}=II(\frac{\partial}{\partial u^1},\frac{\partial}{\partial u^2})\circ v \quad \tilde{G}=II(\frac{\partial}{\partial u^2},\frac{\partial}{\partial u^2})\circ v.
$$

Compute in terms of $E, F, G, \tilde{E}, \tilde{F}$ and \tilde{G} , the Weingarten map $L \circ v$, the Gauß curvature $K \circ v$, the mean curvature $H \circ v$, and the principal curvatures $\kappa_1 \circ v$ and $κ_2 \circ v$.

2. Let us write (x^1, x^2, x^3) for the coordinates in \mathbb{R}^3 . Take a circle of radius $r > 0$ in the (x^1, x^3) -plane and rotate it around a circle of radius $R > r$ in the (x^1, x^2) -plane. The result is a 2-dimensional torus M in \mathbb{R}^3 . If $I \subset \mathbb{R}$ is an open interval of length $< 2\pi$ the map $v: I \times I \to \mathbb{R}^3$ given by

$$
v(\phi, \theta) = ((R + r \cos \theta) \cos \phi, (R + r \cos \theta) \sin \phi, r \sin \theta)
$$

defines a local parametrization of M . With respect to v , compute, using the previous exercise, the metric g on M induced by the Euclidean metric on \mathbb{R}^3 , the 2nd fundamental form, the Gauß and the mean curvature, the principal curvatures and the principal curvature directions of the surface (M, g) in \mathbb{R}^3 .

Hint: Note that $\nu(\phi, \theta) = (\cos \phi \cos \theta, \sin \phi \cos \theta, \sin \theta)$ defines a local unit normal vector field for M.

3. Suppose $(M, g) \subset (\mathbb{R}^{m+1}, g) = (\mathbb{R}^{m+1}, g^{\text{euc}})$ is a connected oriented hypersurface in Euclidean space. Show that all points in M are umbilic if and only if M is part of an affine hyperplane or a sphere.

Hint: For \Rightarrow show the following:

• Fix a global unit normal vector field $\nu : M \to \mathbb{R}^{m+1}$. Then, by assumption, for any $x \in M$ there exists $\lambda(x) \in \mathbb{R}$ such that

$$
L_x = \lambda(x) \mathrm{Id}_{T_xM}.
$$

Since $\lambda = \frac{g(L(\xi),\xi)}{g(\xi,\xi)}$ $\frac{\langle L(\xi),\xi \rangle}{g(\xi,\xi)}$ for any local vector field ξ on M , $\lambda : M \to \mathbb{R}$ is smooth. Show that λ is constant, by, for instance, picking a chart and computing the left-hand-side of $\left[\frac{\partial}{\partial n}\right]$ $\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u}$ $\frac{\partial}{\partial u^j}]\cdot \nu=0.$

- If $\lambda = 0$, show that any curve in M is contained in an affine hyperplane with (constant) normal vector ν .
- If $\lambda \neq 0$, show that $f : M \to \mathbb{R}^{m+1}$, given by $f(x) = x \frac{1}{\lambda}$ $\frac{1}{\lambda} \nu(x)$, is constant.