Tutorial 11—Global Analysis

- 1. Suppose ∇ is an affine connection on a manifold M.
 - (a) Show that its curvature, given by,

$$R(\xi,\eta)(\zeta) = \nabla_{\xi} \nabla_{\eta} \zeta - \nabla_{\eta} \nabla_{\xi} \zeta - \nabla_{[\xi,\eta]} \zeta,$$

for vector fields $\xi, \eta, \zeta \in \mathfrak{X}(M)$ defines a $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ -tensor on M.

(b) Show that, if ∇ is torsion-free, the Bianchi identity holds:

$$R(\xi,\eta)(\zeta) + R(\eta,\zeta)(\xi) + R(\zeta,\xi)(\eta) = 0,$$

for any $\xi, \eta, \zeta \in \mathfrak{X}(M)$.

2. Suppose $E \to M$ is a vector bundle over a manifold M equipped with a linear connection ∇ , that is, a \mathbb{R} -bilinear map

$$\nabla: \Gamma(TM) \times \Gamma(E) \to \Gamma(E)$$
$$(\xi, s) \mapsto \nabla_{\xi} s$$

such that for $\xi \in \Gamma(TM)$, $s \in \Gamma(E)$ and $f \in C^{\infty}(M, \mathbb{R})$ one has

- $\nabla_{f\xi}s = f\nabla_{\xi}s$
- $\nabla_{\xi} fs = f \nabla_{\xi} s + (\xi \cdot f) s.$
- (a) Show that $\nabla: \Gamma(TM) \times \Gamma(E^*) \to \Gamma(E^*)$ (typically also denoted by ∇) given by

$$(\nabla_{\xi}\mu)(s) = \xi \cdot \mu(s) - \mu(\nabla_{\xi}s), \text{ for } \mu \in \Gamma(E^*), \xi \in \Gamma(TM), s \in \Gamma(E)$$

defines a linear connection on the dual vector bundle $E^* \to M$.

(b) Suppose $\tilde{E} \to M$ is another vector bundle equipped with a linear connection $\tilde{\nabla}$. Show the vector bundle $E \otimes \tilde{E} \to M$ admits a linear connection characterized by

$$\nabla_{\xi}(s\otimes\tilde{s}) = \nabla_{\xi}s\otimes\tilde{s} + s\otimes\tilde{\nabla}_{\xi}\tilde{s}$$

for $\xi \in \Gamma(TM)$, $s \in \Gamma(E)$ and $\tilde{s} \in \Gamma(\tilde{E})$.

3. Suppose ∇ is an affine connection on a manifold M. Then the previous exercise shows that ∇ induces a linear connection ∇ : Γ(TM) × T^p_q(M) → T^p_q(M) on all tensor bundles. Show that it also induces a linear connection on the bundles Λ^kT^{*}M for k = 1, ... dim(M) characterized by

$$abla_{\xi}(\omega \wedge \mu) =
abla_{\xi}\omega \wedge \mu + \omega \wedge
abla_{\xi}\mu$$

for $\omega \in \Gamma(\Lambda^k T^*M)$ and $\mu \in \Gamma(\Lambda^\ell T^*M)$ and give a formula.

- 4. Suppose (M, g) is a Riemannian manifold.
 - (a) For vector fields $\xi, \eta \in \mathfrak{X}(M)$, let $\nabla_{\xi} \eta \in \mathfrak{X}(M)$ be the unique vector field such that

$$g(\nabla_{\xi}\eta,\zeta) = \frac{1}{2} \Big(\xi \cdot g(\eta,\zeta) + \eta \cdot g(\zeta,\xi) - \zeta \cdot g(\xi,\eta) + g([\xi,\eta],\zeta) - g([\xi,\zeta],\eta) - g([\eta,\zeta],\xi) \Big) \Big)$$

for all $\zeta \in \mathfrak{X}(M)$. Show that ∇ defines a torsion-free affine connection satisfying

$$\xi \cdot g(\eta, \zeta) = g(\nabla_{\xi} \eta, \zeta) + g(\eta, \nabla_{\xi} \zeta)$$

for $\xi, \eta, \zeta \in \mathfrak{X}(M)$.

- (b) The connection ∇ in (a) is called the Levi-Civita connection of (M, g). Show that its curvature satisfies:
 - $g(R(\xi,\eta)(\zeta),\mu) = -g(R(\xi,\eta)(\mu),\zeta),$
 - $g(R(\xi,\eta)(\zeta),\mu) = g(R(\zeta,\mu)(\xi),\eta),$

for $\xi, \eta, \zeta, \mu \in \mathfrak{X}(M)$.

(c) Suppose (U, u) is a chart for M and let R be the Riemann curvature, i.e. the curvature of the Levi-Civita connection of (M, g). Compute

$$R(\frac{\partial}{\partial u^i},\frac{\partial}{\partial u^j})(\frac{\partial}{\partial u^k})$$

in terms of the Christoffel symbols.

5. Suppose $H = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ is the upper-half plane and equip it with the Riemannian metric

$$g = \frac{1}{y^2} dx \otimes dx + \frac{1}{y^2} dy \otimes dy.$$

- (a) Compute the Christoffel symbols of g.
- (b) Compute the geodesics of g.
- (c) Compute the Riemann curvature.
- 6. Identifying $H = \{(x, y) \in \mathbb{R}^2 : y > 0\} = \{z = x + iy \in \mathbb{C} : y > 0\}$ in the previous example, we may write g as

$$g = \frac{1}{\mathrm{Im}(z)^2} \mathrm{Re}(dz \otimes d\bar{z}) = \frac{4}{|z - \bar{z}|^2} \mathrm{Re}(dz \otimes d\bar{z}),$$

where dz = dx + idy, $d\overline{z} = dx - idy$, Im and Re denote imaginary and real part, and $|_{-}|$ is the absolute value of complex numbers.

Consider $SL(2, \mathbb{R}) = \{A \in GL(2, \mathbb{R}) : \det A = 1\}$. For $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R})$ and $z \in \mathbb{C}$ let

$$f_A(z) = \frac{az+b}{cz+d}.$$

- (a) Show that f_A is a diffeomorphism from H to itself for any $A \in SL(2, \mathbb{R})$ and that $f_{AB} = f_A \circ f_B$.
- (b) Show that f_A is an isometry of H.
- (c) Show that for any two points $z, z' \in H$ there exists $A \in SL(2, \mathbb{R})$ such that $f_A(z) = z'$.
- (d) Characterize the elements $A \in SL(2, \mathbb{R})$ such that $f_A(i) = i$.