Tutorial 2 and 3—Global Analysis

1. For $i = 1, \dots n$ let (M_i, \mathcal{A}_i) be a smooth manifolds. Suppose $M := M_1 \times \dots \times M_n$ is endowed with the product topology. Then show that

$$
\mathcal{A} := \{ (U_1 \times \ldots \times U_n, u_1 \times \ldots \times u_n) : (U_i, u_i) \in \mathcal{A}_i \}
$$

defines a smooth atlas on M and that the projections $pr_i : M \to M_i$ are smooth. Moreover show that, if N is a smooth manifold and $f_i: N \to M_i$ smooth functions, then there exists a unique smooth function $f : N \to M$ such that $pr_i \circ f = f_i$ and that this property characterizes the smooth manifold structure on M uniquely.

2. Suppose (M_i, \mathcal{A}_i) are smooth manifolds for $i \in I$, where I is countable. Consider the disjoint union

$$
M := \sqcup_{i \in I} M_i = \bigcup_{i \in I} \{(x, i) : x \in M_i\}
$$

endowed with the disjoint union topology and denote by $\text{inj}_i : M_i \hookrightarrow M$ the canonical injections (inj_i $(x) = (x, i)$). Show that $\mathcal{A} := \bigcup_{i \in I} \mathcal{A}_i$ defines a smooth atlas on M and that the injections inj_i are smooth. Moreover, show that for any smooth manifold N and smooth functions $f_i: M_i \to N$, there exists a unique smooth function $f : M \to N$ such that $f \circ inj_i = f_i$ and show that this property characterizes the smooth manifold structure on M uniquely.

3. Suppose $U \subset \mathbb{R}^m$ is open and $f: U \to \mathbb{R}^n$ a smooth map such that $D_x f: \mathbb{R}^m \to$ \mathbb{R}^n is of rank r for all $x \in U$.

Show that for any $x_0 \in U$ there exists a diffeomorphism ϕ between an open neighbourhood of x_0 and an open neighbourhood of $0 \in \mathbb{R}^m$ and a diffeomorphism ψ between an open neighbourhood of $y_0 = f(x_0)$ and an open neighbourhood of 0 in \mathbb{R}^n such that the locally defined map

$$
\psi \circ f \circ \phi^{-1} : \mathbb{R}^r \times \mathbb{R}^{m-r} \to \mathbb{R}^r \times \mathbb{R}^{n-r}
$$

has the form $(x_1, ..., x_r, ..., x_m) \mapsto (x_1, ..., x_r, 0, ..., 0).$

Hint: The idea is that f locally around x_0 looks like $D_{x_0}f$, which is a linear map $\mathbb{R}^m \to \mathbb{R}^n$ of rank r, which up to a basis change has the form $(x_1, ..., x_m) \mapsto$ $(x_1, ..., x_r, 0, ..., 0).$

(a) Set $E_2 := \text{ker}(D_{x_0}f) \subset \mathbb{R}^m$ and $E_1 := E_2^{\perp}$, and $F_1 := \text{Im}(D_{x_0}f) \subset \mathbb{R}^n$ and $F_2 := F_1^{\perp}$. Decompose

$$
\mathbb{R}^m = E_1 \oplus E_2 \quad \text{and} \quad \mathbb{R}^n = F_1 \oplus F_2,
$$

and consider f as a map $f = (f_1, f_2) : E_1 \oplus E_2 \rightarrow F_1 \oplus F_2$ defined on $U \subset E_1 \oplus E_2 = \mathbb{R}^m$.

(b) Show that $\phi : E_1 \oplus E_2 \rightarrow F_1 \oplus E_2$ given by

$$
\phi(x^1, x^2) = (f_1(x^1, x^2) - f_1(x_0^1, x_0^2), x^2 - x_0^2)
$$

is a local diffeomorphism around $x_0 = (x_0^1, x_0^2)$ whose local inverse will be the required map.

(c) Show that $g := f \circ \phi^{-1} : F_1 \oplus E_2 \to F_1 \oplus F_2$ has the form

$$
g(y^1, y^2) = (g_1((y^1, y^2), g_2((y^1, y^2)) = (y^1 + y_0^1, g_2(y^1, 0)).
$$

Now ψ is easily seen to be...?

- 4. Suppose M and N are are manifolds of dimension m respectively n and let f : $M \to N$ be a smooth map of constant rank r. Deduce from (1) that for any fixed $y \in f(M)$ the preimage $f^{-1}(y) \subset M$ is a submanifold of dimension $m - r$ in M.
- 5. Consider the Grassmannian of r-planes in \mathbb{R}^n :

 $\text{Gr}(r, n) := \{ E \subset \mathbb{R}^n : E \text{ is a r-dimensional subspace of } \mathbb{R}^n \}.$

Denote by $\text{St}_r(\mathbb{R}^n)$ the set of r-tuples of linearly independent vectors in \mathbb{R}^n . Identifying an element $X \in \mathbf{St}_r(\mathbb{R}^n)$ with a $n \times r$ matrix

$$
X = (x^1, \dots, x^r) \qquad x^i \in \mathbb{R}^n,
$$

shows that $\text{St}_r(\mathbb{R}^n)$ equals the subset of rank r matrices in the vector space $\text{M}_{n\times r}(\mathbb{R})$, which we know from Tutorial 1 is an open subset. Write

$$
\pi: \mathbf{St}_r(\mathbb{R}^n) \to \mathbf{Gr}(r,n)
$$

for the natural projection given by $\pi(X) = \text{span}(x^1, ..., x^r)$ and equip $\text{Gr}(r, n)$ with the quotient topology with respect to π .

(a) Fix $E \in \text{Gr}(r, n)$ and let $F \subset \mathbb{R}^n$ be a subspace of dimension $n - r$ such that $\mathbb{R}^n = E \oplus \overline{F}$. Show that

$$
U_{(E,F)} = \{ W \in \text{Gr}(r,n) : W \cap F = \{0\} \} \subset \text{Gr}(r,n)
$$

is an open neighbourhood of E.

(b) Show that any element $W \in U_{(E,F)}$ determines a unique linear map

$$
W: E \to F
$$

such that its graph equals W, i.e. $W = \{(x, \widetilde{W}x) : x \in E\}.$

- (c) Show that the map $u_{E,F}: U_{(E,F)} \to \text{Hom}(E, F)$ given by $u_{E,F}(W) = \widetilde{W}$ is a homeomorphism.
- (d) Show that

 $\mathcal{A} := \{ (U_{(E,F)}, u_{(E,F)}) : E, F \subset \mathbb{R}^n \text{ complementary subspaces of dimension } r \text{ resp. } n-r \}$

is a smooth atlas for $Gr(r, n)$.

- 6. For a topological space M denote by $C^{0}(M)$ the vector space of continuous realvalued functions $f : M \to \mathbb{R}$. Any continuous map $F : M \to N$ between topological spaces M and N induces a map $F^* : C^0(N) \to C^0(M)$ given by $F^*(f) := f \circ F : M \to \mathbb{R}.$
	- (a) Show that F^* is linear.
	- (b) If M and N are (smooth) manifolds, show that $F : M \to N$ is smooth \iff $F^*(C^\infty(N)) \subset C^\infty(M).$
	- (c) If F is a homeomorphism between (smooth) manifolds, show that F is a diffeomorphism \iff F^{*} is an isomorphism.