Tutorial 2 and 3—Global Analysis

1. For i = 1, ...n let (M_i, A_i) be a smooth manifolds. Suppose $M := M_1 \times ... \times M_n$ is endowed with the product topology. Then show that

$$\mathcal{A} := \{ (U_1 \times ... \times U_n, u_1 \times ... \times u_n) : (U_i, u_i) \in \mathcal{A}_i \}$$

defines a smooth atlas on M and that the projections $\operatorname{pr}_i:M\to M_i$ are smooth. Moreover show that, if N is a smooth manifold and $f_i:N\to M_i$ smooth functions, then there exists a unique smooth function $f:N\to M$ such that $\operatorname{pr}_i\circ f=f_i$ and that this property characterizes the smooth manifold structure on M uniquely.

2. Suppose (M_i, A_i) are smooth manifolds for $i \in I$, where I is countable. Consider the disjoint union

$$M := \sqcup_{i \in I} M_i = \cup_{i \in I} \{(x, i) : x \in M_i\}$$

endowed with the disjoint union topology and denote by $\operatorname{inj}_i: M_i \hookrightarrow M$ the canonical injections $(\operatorname{inj}_i(x) = (x,i))$. Show that $\mathcal{A} := \cup_{i \in I} \mathcal{A}_i$ defines a smooth atlas on M and that the injections inj_i are smooth. Moreover, show that for any smooth manifold N and smooth functions $f_i: M_i \to N$, there exists a unique smooth function $f: M \to N$ such that $f \circ \operatorname{inj}_i = f_i$ and show that this property characterizes the smooth manifold structure on M uniquely.

3. Suppose $U \subset \mathbb{R}^m$ is open and $f: U \to \mathbb{R}^n$ a smooth map such that $D_x f: \mathbb{R}^m \to \mathbb{R}^n$ is of rank r for all $x \in U$.

Show that for any $x_0 \in U$ there exists a diffeomorphism ϕ between an open neighbourhood of x_0 and an open neighbourhood of $0 \in \mathbb{R}^m$ and a diffeomorphism ψ between an open neighbourhood of $y_0 = f(x_0)$ and an open neighbourhood of 0 in \mathbb{R}^n such that the locally defined map

$$\psi \circ f \circ \phi^{-1} : \mathbb{R}^r \times \mathbb{R}^{m-r} \to \mathbb{R}^r \times \mathbb{R}^{n-r}$$

has the form $(x_1, ..., x_r, ..., x_m) \mapsto (x_1, ..., x_r, 0, ..., 0)$.

Hint: The idea is that f locally around x_0 looks like $D_{x_0}f$, which is a linear map $\mathbb{R}^m \to \mathbb{R}^n$ of rank r, which up to a basis change has the form $(x_1,...,x_m) \mapsto (x_1,...,x_r,0,...,0)$.

(a) Set $E_2 := \ker(D_{x_0} f) \subset \mathbb{R}^m$ and $E_1 := E_2^{\perp}$, and $F_1 := \operatorname{Im}(D_{x_0} f) \subset \mathbb{R}^n$ and $F_2 := F_1^{\perp}$. Decompose

$$\mathbb{R}^m = E_1 \oplus E_2$$
 and $\mathbb{R}^n = F_1 \oplus F_2$,

and consider f as a map $f=(f_1,f_2): E_1\oplus E_2\to F_1\oplus F_2$ defined on $U\subset E_1\oplus E_2=\mathbb{R}^m.$

(b) Show that $\phi: E_1 \oplus E_2 \to F_1 \oplus E_2$ given by

$$\phi(x^1, x^2) = (f_1(x^1, x^2) - f_1(x_0^1, x_0^2), x^2 - x_0^2)$$

is a local diffeomorphism around $x_0 = (x_0^1, x_0^2)$ whose local inverse will be the required map.

(c) Show that $g:=f\circ\phi^{-1}:F_1\oplus E_2\to F_1\oplus F_2$ has the form

$$g(y^1, y^2) = (g_1((y^1, y^2), g_2((y^1, y^2))) = (y^1 + y_0^1, g_2(y^1, 0)).$$

Now ψ is easily seen to be...?

- 4. Suppose M and N are are manifolds of dimension m respectively n and let $f: M \to N$ be a smooth map of constant rank r. Deduce from (1) that for any fixed $y \in f(M)$ the preimage $f^{-1}(y) \subset M$ is a submanifold of dimension m r in M.
- 5. Consider the Grassmannian of r-planes in \mathbb{R}^n :

$$Gr(r, n) := \{ E \subset \mathbb{R}^n : E \text{ is a r-dimensional subspace of } \mathbb{R}^n \}.$$

Denote by $\operatorname{St}_r(\mathbb{R}^n)$ the set of r-tuples of linearly independent vectors in \mathbb{R}^n . Identifying an element $X \in \operatorname{St}_r(\mathbb{R}^n)$ with a $n \times r$ matrix

$$X = (x^1,, x^r) \qquad x^i \in \mathbb{R}^n,$$

shows that $\operatorname{St}_r(\mathbb{R}^n)$ equals the subset of rank r matrices in the vector space $\mathbf{M}_{n\times r}(\mathbb{R})$, which we know from Tutorial 1 is an open subset. Write

$$\pi: \operatorname{St}_r(\mathbb{R}^n) \to \operatorname{Gr}(r,n)$$

for the natural projection given by $\pi(X) = \operatorname{span}(x^1, ..., x^r)$ and equip $\operatorname{Gr}(r, n)$ with the quotient topology with respect to π .

(a) Fix $E \in Gr(r, n)$ and let $F \subset \mathbb{R}^n$ be a subspace of dimension n - r such that $\mathbb{R}^n = E \oplus F$. Show that

$$U_{(E,F)} = \{ W \in Gr(r,n) : W \cap F = \{0\} \} \subset Gr(r,n)$$

is an open neighbourhood of E.

(b) Show that any element $W \in U_{(E,F)}$ determines a unique linear map

$$\widetilde{W}: E \to F$$

such that its graph equals W, i.e. $W = \{(x, \widetilde{W}x) : x \in E\}$.

- (c) Show that the map $u_{E,F}:U_{(E,F)}\to \operatorname{Hom}(E,F)$ given by $u_{E,F}(W)=\widetilde{W}$ is a homeomorphism.
- (d) Show that

$$\mathcal{A}:=\{(U_{(E,F)},u_{(E,F)}):E,F\subset\mathbb{R}^n\text{ complimentary subspaces of dimension }r\text{ resp. }n-r\}$$
 is a smooth atlas for $\mathrm{Gr}(r,n)$.

- 6. For a topological space M denote by $C^0(M)$ the vector space of continuous real-valued functions $f:M\to\mathbb{R}$. Any continuous map $F:M\to N$ between topological spaces M and N induces a map $F^*:C^0(N)\to C^0(M)$ given by $F^*(f):=f\circ F:M\to\mathbb{R}$.
 - (a) Show that F^* is linear.
 - (b) If M and N are (smooth) manifolds, show that $F: M \to N$ is smooth \iff $F^*(C^\infty(N)) \subset C^\infty(M)$.
 - (c) If F is a homeomorphism between (smooth) manifolds, show that F is a diffeomorphism $\iff F^*$ is an isomorphism.