Tutorial 3-4—Global Analysis

1. We have seen in the first tutorial that $\operatorname{Hom}_r(\mathbb{R}^n,\mathbb{R}^m)$ is a submanifold of $\operatorname{Hom}(\mathbb{R}^n,\mathbb{R}^m)$ of dimension r(n+m-r) in. For $X\in\operatorname{Hom}_r(\mathbb{R}^n,\mathbb{R}^m)$ compute the tangent space

$$T_X \operatorname{Hom}_r(\mathbb{R}^n, \mathbb{R}^m) \subset T_X \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m) \cong \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m).$$

2. We have seen in the first tutorial that the Grassmannian manifold Gr(r,n) can be realized as a submanifold of $Hom(\mathbb{R}^n,\mathbb{R}^n)$ of dimension r(n-r). For $E\in Gr(r,n)$ compute the tangent space

$$T_E \operatorname{Gr}(r, n) \subset T_E \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^n) \cong \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^n).$$

- 3. Consider the general linear group $GL(n,\mathbb{R})$ and the special linear group $SL(n,\mathbb{R})$. We have seen that they are submanifolds of $M_n(\mathbb{R}) = \mathbb{R}^{n^2}$ (even so called Lie groups) and that $T_{Id}GL(n,\mathbb{R}) \cong M_n(\mathbb{R}) = \mathbb{R}^{n^2}$.
 - (a) Compute the tangent space $T_{Id}SL(n,\mathbb{R})$ of $SL(n,\mathbb{R})$ at the identity Id.
 - (b) Fix $A \in SL(n, \mathbb{R})$ and consider the conjugation $\operatorname{conj}_A : SL(n, \mathbb{R}) \to SL(n, \mathbb{R})$ by A given by $\operatorname{conj}_A(B) = ABA^{-1}$. Show that conj_A is smooth and compute the derivative $T_{\operatorname{Id}}\operatorname{conj}_A : T_{\operatorname{Id}}\operatorname{SL}(n, \mathbb{R}) \to T_{\operatorname{Id}}\operatorname{SL}(n, \mathbb{R})$.
 - (c) Consider the map $Ad: SL(n,\mathbb{R}) \to Hom(T_{Id}SL(n,\mathbb{R}),T_{Id}SL(n,\mathbb{R}))$ given by $Ad(A):=T_{Id}conj_A$. Show that Ad is smooth and compute $T_{Id}Ad$.
- 4. Consider \mathbb{R}^n equipped with the standard inner product of signature (p,q) (where p+q=n) given by

$$\langle x, y \rangle := \sum_{i=1}^{p} x_i y_i - \sum_{i=p+1}^{n} x_i y_i$$

and the group of linear orthogonal transformation of $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ given by

$$\mathbf{O}(p,q) := \{ A \in \mathrm{GL}(n,\mathbb{R}) : \langle Ax, Ay \rangle = \langle x, y \rangle \quad \forall x, y \in \mathbb{R}^n \}.$$

(a) Show that

$${\rm O}(p,q)=\{A\in {\rm GL}(n,\mathbb{R}): A^{-1}=I_{p,q}A^tI_{p,q}\},$$

where $I_{p,q}=\begin{pmatrix} \mathrm{Id}_p & 0 \\ 0 & -\mathrm{Id}_q \end{pmatrix}$, and that $\mathrm{O}(p,q)$ is a submanifold of $M_n(\mathbb{R})$. What is its dimension?

- (b) Show that O(p,q) is a subgroup of $GL(n,\mathbb{R})$ with respect to matrix multiplication μ and that $\mu: O(p,q) \times O(p,q) \to O(p,q)$ is smooth (i.e. that O(p,q) is a Lie group.)
- (c) Compute the tangent space $T_{\mathrm{Id}}\mathrm{O}(p,q)$ of $\mathrm{O}(p,q)$ at the identity Id.