Tutorial 5—Global Analysis

1. Suppose $M = \mathbb{R}^3$ with standard coordinates (x, y, z) . Consider the vector field

$$
\xi(x, y, z) = 2\frac{\partial}{\partial x} - \frac{\partial}{\partial y} + 3\frac{\partial}{\partial z}.
$$

How does this vector field look like in terms of the coordinate vector fields associated to the cylindrical coordinates (r, ϕ, z) , where $x = r \cos \phi$, $y = r \sin \phi$ and $z = r \cos \phi$. z? Or with respect to the spherical coordinates (r, ϕ, θ) , where $x = r \sin \theta \cos \phi$, $y = r \sin \theta \cos \phi$ and $z = r \cos \theta$?

2. Consider \mathbb{R}^3 with coordinates (x, y, z) and the vector fields

$$
\xi(x, y, z) = (x^2 - 1)\frac{\partial}{\partial x} + xy\frac{\partial}{\partial y} + xz\frac{\partial}{\partial z}
$$

$$
\eta(x, y, z) = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + 2xz^2\frac{\partial}{\partial z}.
$$

Are they tangent to the cylinder $M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\} \subset \mathbb{R}^3$ with radius 1 (i.e. do they restrict to vector fields on M)?

- 3. Suppose $M = \mathbb{R}^2$ with coordinates (x, y) . Consider the vector fields $\xi(x, y) = y \frac{\delta}{\delta x}$ suppose $M = x^2$ with coordinates (x, y) . Consider the vector netas $\zeta(x, y) = y_{\partial x}$
and $\eta(x, y) = \frac{x^2}{2} \frac{\partial}{\partial y}$ on M. We computed in class their flows and saw that they are 2 $\frac{\partial}{\partial y}$ on M. We computed in class their flows and saw that they are complete. Compute $[\xi, \eta]$ and its flow? Is $[\xi, \eta]$ complete?
- 4. Let M be a (smooth) manifold and $\xi, \eta \in \mathfrak{X}(M)$ two vector fields on M. Show that
	- (a) $[\xi, \eta] = 0 \iff (\text{Fl}^{\xi})^* \eta = \eta$, whenever defined $\iff \text{Fl}^{\xi}_t \circ \text{Fl}^{\eta}_s = \text{Fl}^{\eta}_s \circ \text{Fl}^{\xi}_t$, whenever defined.
	- (b) If N is another manifold, $f : M \to N$ a smooth map, and ξ and η are f-related to vector fields $\tilde{\xi}$ resp. $\tilde{\eta}$ on N, then $[\xi, \eta]$ is f-related to $[\tilde{\xi}, \tilde{\eta}]$.
- 5. Consider the general linear group $GL(n, \mathbb{R})$. For $A \in GL(n, \mathbb{R})$ denote by

$$
\lambda_A : GL(n, \mathbb{R}) \to GL(n, \mathbb{R}) \qquad \lambda_A(B) = AB
$$

$$
\rho_A : GL(n, \mathbb{R}) \to GL(n, \mathbb{R}) \qquad \rho_A(B) = BA
$$

left respectively right multiplication by A, and by μ : $GL(n, \mathbb{R}) \times GL(n, \mathbb{R}) \rightarrow$ $GL(n, \mathbb{R})$ the multiplication map.

(a) Show that λ_A and ρ_A are diffeomorphisms for any $A \in GL(n, \mathbb{R})$ and that

$$
T_B \lambda_A(B, X) = (AB, AX) \qquad T_B \rho_A(B, X) = (BA, XA),
$$

where $(B, X) \in T_BGL(n, \mathbb{R}) = \{(B, X) : X \in M_n(\mathbb{R})\}.$

(b) Show that

$$
T_{(A,B)}\mu((A,B),(X,Y)) = T_B\lambda_A Y + T_A \rho^B X = (AB, AY + XB)
$$

where $(A, B) \in GL(n, \mathbb{R}) \times GL(n, \mathbb{R})$ and $(X, Y) \in M_n(\mathbb{R}) \times M_n(\mathbb{R})$.

(c) For any $X \in M_n(\mathbb{R}) \cong T_{Id}GL(n, \mathbb{R})$ consider the maps

$$
L_X: GL(n, \mathbb{R}) \to TGL(n, \mathbb{R}) \qquad L_X(B) = T_{Id} \lambda_B(Id, X) = (B, BX).
$$

$$
R_X: GL(n, \mathbb{R}) \to TGL(n, \mathbb{R}) \qquad R_X(B) = T_{Id} \rho_B(Id, X) = (B, XB).
$$

Show that L_X and R_X are smooth vector field and that $\lambda_A^* L_X = L_X$ and $\rho_A^* R_X = R_X$ for any $A \in GL(n, \mathbb{R})$. What are their flows? Are these vector fields complete?

(d) Show that $[L_X, R_Y] = 0$ for any $X, Y \in M_n(\mathbb{R})$.