Tutorial 6-8—Global Analysis

1. Suppose 04; fori =1,...,kand j = 1, ..., n are smooth real-valued functions defined
on some open set U C R"** satisfying
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where we write (z,2) = (2!,...,2", 21, ..., 2¥) for a point in R"**, Show that for

any point (zg,29) € U there exists an open neighbourhood V' of z( in R" and a
unique C™-map f : V — R¥ such that
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In the class/tutorial we proved this for £ = 1 and j = 2.

(!, ..., 2") = oz;(xl,...,x”,fl(:v),...,fk(x)) and  f(xg) = 2.

2. Which of the following systems of PDEs have solutions f(x,y) (resp. f(z,y) and
g(x,y)) in an open neighbourhood of the origin for positive values of f(0,0) (resp.
f(0,0) and ¢(0, 0))?

(@ 3 df = fcosy and d—f = —flog f tany.
(b) % = ¢*f and g—g = ze¥f.
(c) %:fand%:g;ax_gandag—f

3. Suppose 2 — M is a (smooth) vector bundle of rank £ over a manifold M. Then
E is called trivializable, if it isomorphic to the trivial vector bundle M x R* — M.

(a) Show that £ — M is trivializable <= FE — M admits a global frame, i.e.
there exist (smooth) sections sy, ..., sy of E such that s;(z), ..., sx(z) span E,
forany z € M.

(b) Show that the tangent bundle of any Lie group G is trivializable.

(c) Recall that R™ has the structure of a (not necessarily associative) normed divi-
sion algebra over R for n = 1, 2,4, 8. Use this to show that the tangent bundle
of the spheres S' C R2, S3 C R* and S” C R3 is trivializable.

4. Let V be a finite dimensional real vector space and consider the subspace of r-
linear alternating maps A"V* = LI (V,R) of the vector space of r-linear maps
L"(V,R) = (V*)®". Show that for w € L"(V,R) the following are equivalent:
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(@ we AV

(b) For any vectors vy, ..., v, € V one has
W(V1s vey Uiy vey Uy ey V) = —W(V1, oy Uy ooy Uy oy V)

(c) w is zero whenever one inserts a vector v € V' twice.

(d) w(vy,...,v;) = 0, whenever vy, ..., v, € V are linearly dependent vectors.

5. Let V be a finite dimensional real vector space. Show that the vector space A*V* :=

D,-, A"V* is an associative, unitial, graded-anticommutative algebra with respect
to the wedge product A, i.e. show that the following holds:

@ (wWANAC=wA (nAC)forall w,n, ¢ € A*V*.

(b) 1 R=AV*satisfiesl A\w=wA1l=1forallw € A*V*.
() A"V ANV C ATV,

d wAn=(-1)"nAwforw e A"V*andn € A°V*.

Moreover, show that for any linear map f : V' — W the linear map f* : A*W* —
A*V* is a morphism of graded unitlal algebras, i.e. f*1 = 1, f*(A"W*) C A"V*
and f*(wAn) = ffw A f*n.

. Let V be a finite dimensional real vector space. Show that:
(a) Ifwy,...,w, € V¥and vy, ...,v, € V, then
w1 AN wr(vl, ceey UT) = det((wi(vj))lgi,jg,,).

In particular, wy, ..., w, are linearly independent <= w; A ... Aw, # 0.
(b) If {\y, ..., A\, } is a basis of V*, then
{)‘11/\/\)‘17 1< <. <1, STL}
is a basis of A"V*.
. Let V be a finite dimensional real vector space. An element . € L"(V,R) is called
symmetric, if 1(vy, ..., v;) = ((Vo(1), ..., Vo(r)) for any vectors vy, ..., v, € V and any

permutation o € S”. Denote by S"V* C u € L"(V,R) the subspace of symmetric
elements in the vector space L"(V,R).

(a) For u € L"(V,R) show that
pe SV = p(vr, .., Vi ooy Vg, ooy U) = (U1, 0oy Vg ooy Uiy o, Vg,

for any vectors vy, ..., v, € V.



(b) Consider the map Sym : L"(V,R) — L"(V,R) given by

1
Sym(p)(vi, ...y vp) = ol Z (Vo (1) -+ Vo(r)) -

T oesT
Show that Image(Sym) = S™V* and that u € S"V* <= Sym(u) = p.

8. Let V' be a finite dimensional real vector space and set S(V*) := @9°,S"V* with
the convention S°V* = R and S*V* = V*. For u € S"V* and v € S'V* define
their symmetric product by

pOv:=Sym(u®v)e STV

By blinearity, we extend this to a R-bilinear map © : S(V*) x S(V*) — S(V*).
Show that S(V*) is an unitial, associative, commutative, graded algebra with re-
spect to the symmetric product ©.

9. Suppose p: E — M and q : F' — M are vector bundles over M. Show that their
direct sum £ & F = Uyey B, & F, — M and their tensor product £ ® F' =
Uperm Br ® F, — M are again vector bundles over M.

10. Suppose £ C T'M is a smooth distribution of rank k£ on a manifold M of dimension
n and denote by (M) the vector space of differential forms on M.

(a) Show that locally around any point z € M there exists (local) 1-forms w!, ..., w"*
such that for any (local) vector field £ one has: £ is a (local) section of £/ <=
wi(§)=0foralli=1,...,n—k.

(b) Show that E is involutive <= whenever w', ...,w" " are local 1-forms as in
(a) then there exists local 1-forms p%/ fori,j = 1,...,n — k such that

n—k

dw' = Zuf’j AW

(c) Show
Qp(M) ={we QM) :w|g=0} C QM)

is an ideal of the algebra (2(M), A). Here, w|g = 0 for a /-form w means that
w(&, ..., &) = 0 for any sections &1, ...& of F.

(d) Anideal J of (2(M), A) is called differential ideal, if d(.J) C J. Show that
Qg(M) is a differential ideal <= FE is involutive.

11. Suppose M is a manifold and D; : QF(M) — QF"i(M) for i = 1,2 a graded
derivation of degree r; of (QQ(M), A).

(a) Show that
[D17 D2] = Dl O D2 — (_1)T1T2D2 o ‘D1

is a graded derivation of degree 1 + 7.



(b) Suppose D is a graded derivation of (Q(M), A). Letw € Q%(M) be a differen-
tial form and U C M an open subset. Show that w|; = 0 implies D(w)|y = 0.

Hint: Think about writing 0 as fw for some smooth function f and use the
defining properties of a graded derivation.

(c) Suppose D and D are two graded derivations such that D(f) = D(f) and
D(df) = D(df) for all f € C>°(M,R). Show that D = D.

12. Suppose M is a manifold and &, € ['(T'M) vector fields.

(a) Show that the insertion operator i¢ : QF(M) — Q*1(M) is a graded deriva-
tion of degree —1 of (Q2(M), A).

(b) Recall from class that [d,d] = 0. Verify (the remaining) graded-commutator
relations between d, L¢, i,

(ii) [d,ig] =doig+icod= Le.
(i) [Le, L] = *C[E nl-

(iv) [‘C&Zn] &TI}'

V) [ig, in] =

Hint: Use (¢) from 11.



