Tutorial 9—Global Analysis

1. Prove the **Poincaré Lemma**: Suppose $\omega \in \Omega^k(\mathbb{R}^m)$ is a closed k-form, where $k \geq 1$. Show that there exists $\tau \in \Omega^{k-1}(\mathbb{R}^m)$ such that $d\tau = \omega$.

Hint: Show that for any k-form $\omega = \sum_{i_1 < ... < i_k} \omega_{i_1...i_k} dx^{i_1} \wedge ... \wedge dx^{i_k}$ on \mathbb{R}^m ,

$$
P(\omega) = \sum_{\alpha=1}^k \sum_{i_1 < \ldots < i_k} (-1)^{\alpha-1} \left[\int_0^1 t^{k-1} \omega_{i_1 \ldots i_k}(tx) dt \right] x^{i_\alpha} dx^{i_1} \wedge \ldots \wedge \widehat{dx^{i_\alpha}} \wedge \ldots \wedge dx^{i_k}.
$$

is a $(k-1)$ -form on \mathbb{R}^m satisfying

$$
\omega = d(P(\omega)) + P(d\omega).
$$

Here, $\widehat{dx^{i_{\alpha}}}$ means that this term is omitted.

- 2. Show that any manifold with a parallelizable tangent bundle is orientable.
- 3. Suppose $M \subset N$ is a submanifold of codimension 1 (i.e. dim $M = \dim N 1$) of an oriented manifold N . Suppose there exists a smooth vector field along M that is transverse everywhere to M, that is, a smooth map $\nu : M \to TN$ such that for all $x \in M$ one has
	- (i) $\nu(x) \in T_xN$ and
	- (ii) $\nu(x)$ and T_xM span T_xN .

Show that M is orientable. Deduce that a hypersurface

$$
(M,g)\subset (\mathbb{R}^{m+1},g)=(\mathbb{R}^{m+1},g^{\text{euc}})
$$

in Euclidean space is orientable if and only if M admits a globally defined unit normal vector field.

4. Consider $S^m \subset \mathbb{R}^{m+1}$ the unit sphere and the global unit normal vector field $\nu(x) =$ $\sum_{i=1}^{m+1} x^i \frac{\partial}{\partial x^i}$ for S^m . Show that for the nowhere vanishing $m + 1$ -form

$$
\Omega = dx^1 \wedge \dots \wedge dx^{m+1}
$$

on \mathbb{R}^{m+1} ,

$$
\omega(x) := (i_{\nu}\Omega)(x) = \Omega(x)(\nu(x), \dots, \dots) \text{ for } x \in S^m
$$

restricts to a nowhere vanishing m-form on S^m that satisfies

$$
A^*\omega = (-1)^{m+1}\omega,
$$

where $A: S^m \to S^m$ is the antipodal map $A(x) = -x$.

5. Show that *n*-dimensional projective space $\mathbb{R}P^m$ is orientable $\iff m$ is odd.

Hint: For , \implies' consider the natural projection $\pi : S^m \to \mathbb{R}P^m$, given by $\pi(x) =$ [x], and use the previous exercise. For \rightleftharpoons construct an oriented atlas.

6. Suppose M and N are connected, compact, oriented manifolds of the same dimension m. Let $f_0, f_1 : M \to N$ be smooth maps that are homotopic to each other, i.e. there exists a smooth map $F : M \times [0, 1] \rightarrow N$ such that $F(x, 0) = f_0(x)$ and $F(x, 1) = f_1(x)$. Show that for any $\omega \in \Omega^m(N)$ one has

$$
\int_M f_0^*\omega = \int_M f_1^*\omega.
$$

Hint: $M \times [0, 1]$ is an oriented manifold with boundary $\partial M = -(M \times \{0\}) \cup M \times$ ${1}$, where the minus indicates that the orientation on $M \times {0}$ is reversed. Use Stokes' Theorem.

- 7. Use the previous exercise to show that, if the antipodal map $A: S^m \to S^m$ on the sphere S^m is homotopic to the identity Id_{S^m} on S^m , then m is odd.
- 8. Show that on a sphere S^{2m} of even dimension any smooth vector field $\xi \in \mathfrak{X}(S^{2m})$ has a zero.

Hint: Show that if $\xi \in \mathfrak{X}(S^{2m})$ is nowhere vanishing, then there exists a homotopy between the antipodal map and the identity.