Stability of biomolecules - methods

Josef Houser

Autumn 2023

S1004 Methods for structural characterization of biomolecules

Stability

Resistance in environment

- Capability to retain native structure (stay folded)
- Capability to retain activity

no structure no activity structure ? activity

Stability

Quick reminder – structure hierarchy

	Protein	DNAcito
Primary	Sequence (aminoacids, N-term - C-term)	Sequence (nucleotides, 5`- 3`end)
Secondary	α -helix, β -sheet, turns, loops (rotation along torsion angels Ψ and Φ)	Watson-Crick base pairing (A-T, C-G)
Tertiary	3D organization of secondary motives	A-form, B-form, Z-form
Quarternary	oligomerization	nucleosomes

Stability

Quick reminder – structure hierarchy

	×V	
	Protein	DNA
Primary	Sequence (aminoacids, N-term - C-term)	Sequence (nucleotides, 5`- 3`end)
Secondary Tertiary Quarternary	The primary st	tion) these structures are lost. tructure remains broken, only the non-covalent

native [N]

[U]

N

unfolded [U]

 $K_u << 1$ native state is favourable

 $K_u >> 1$ unfolded state is favourable

native

[N]

 $K_u = \frac{[U]}{[N]}$

 $K_u \ll 1$ native state is favourable

ex

 $K_u >> 1$ unfolded state is favourable

y (K_u)

8

6

4

 $x (-\Delta G/RT)$

 $K_u = e^{-\Delta G/RT}$

Native state is favourable when $K_u < 1$ $\Delta G/RT$ is negative

ΔG... Gibbs free energy T... temperature (in Kelvins) R... gas constant (8.314 J·K⁻¹·mol⁻¹) e... Euler number (2.718....)

native [N] unfolded

[U]

 $K_u =$

 $K_u \ll 1$ native state is favourable

 $K_u >> 1$ unfolded state is favourable

• Temperature [K] \rightarrow always positive

Gas constant = 8.314

Gibbs free energy

ΔG... Gibbs free energy T... temperature (in Kelvins) R... gas constant (8.314 J·K⁻¹·mol⁻¹) e... Euler number (2.718....) $-\Delta G/RT$ is negative when $\Delta G > 0$

 $\Delta G = Gibbs free energy$

$$\Delta G = G_U - G_N$$

$$\Delta G = \Delta H - T \Delta S$$

The reaction with $-\Delta G$ will happen spontaneously The state with lower G is prefered

For the protein to be stable, ΔG of unfolding needs to be positive (in such a case $G_N < G_{II}$)

$$G_N \xrightarrow{\kappa_u} \mathcal{G}_U$$

native [N] unfolded [U]

 $\Delta G = \Delta H - T \Delta S$

 $\Delta G = G_{II} - G_{NI}$

H = Enthalpy

Changes in heat

Energy content of the bonds broken and created

hydrogen bonds, van der Waals, salt bridges, S-S

 ΔH is negative when bonds are formed

S = Entropy

Changes in **disorder**

Degree of freedom of molecular movement

Brown's motion

 \uparrow movement $= \uparrow S$

ΔS is negative when bonds are formed

Thermodynamics of unfolding

$$G_N \xrightarrow{\kappa_u} \mathcal{G}_U$$

native [N] u

unfolded [U] H = Enthalpy

S = Entropy

 $+\Delta S$ – unfolded state is more flexible

 $\Delta G = G_{II} - G_{NI}$

 $+\Delta H$ – a lot of non-covalent interactions in folded state

- Δ S from hydrophobic effect – upon exposure of hydrophobic side chains, the water surrounding the protein forms an ordered cluster ("icebergs")

Thermodynamics of unfolding

$$G_N \xrightarrow{\kappa_u} \mathcal{G}_U$$

native [N]

unfolded [U]

H = Enthalpy

Proteins are just stable

$\Delta G = \Delta H - T \Delta S$

 $\Delta G = G_{II} - G_{NI}$

 ΔG of unfolding is typically < 100 kJ mol⁻¹ (compared to energy of C-C bond 300 kJ mol⁻¹)

S = Entropy

Small changes in protein environment can significantly influence the stability

Denaturing conditions

- Chemicals
 - Urea (around 8M)
 - Guanidium chloride (around 6M)
 - High salts concentration
 - SDS

- Extreme pH
 - Proteins are stable the most near their isoelectric point (pl)

Temperature as denaturant

- T_m = melting temperature
- Temperature at which 50% of the sample is unfolded
- The most reliable indicator of thermal stability

Temperature as denaturant

T_m = melting temperature

Influenced by:

- Enviroment (buffer, pH, salts): in different condition, ΔG of unfolding is different
- Presence of ligand: protein-ligand complex is more stable than protein itself
- Heating rate of experiment: slower heating \rightarrow lower T_m standard is 1 °C/min

$\Delta G = \Delta H - T \Delta S$

Methods

- Differential scanning calorimetry (DSC)
- Differential scanning fluorimetry (DSF) Thermal shift assay (TSA)
- Nano-differential scanning fluorimetry (nanoDSF)
- Circular dichroism (CD)

- Measures the energy absorbed or released by a sample as it is heated or cooled
- Gold standard for T_m determination
- Directly measures the thermodynamic of unfolding

Sample cell (sample) and reference cell (buffer) are heated/cooled down at the same rate

Sample absorbs/release part of the energy causing a temperature difference between the sample and reference cell

DSC machine measures the energy needed to equalize the temperature

he peak of the transition

ΔC_p

change of heat capacity foldedunfolded sample Difference between two baselines

 ΔH_{cal} Area of the peak (integration)

ΔH_{vH} The slope of the peak

 ΔH can be determined in two ways:

- Directly by calorimetric measurement area under the peak ΔH_{cal}
- Indirectly by measureing the temperature dependance of the eqilibrium constant – van`t Hoff method, the slope of the peak, ΔH_{vH}

If the difference between ΔH_{cal} and ΔH_{vH} is observed, it indicates that the reaction is more complicated – presence of intermediate state

VP-DSC

1 sample at a time 0.8 ml sample at 0.1-2 mg/ml Identical buffer in reference cell necessary (dialyses, lyophylization) Degasing required

Auto PEAQ-DSC

Automated version (up to 282 samples in a row) 0.2 ml sample at 0.1-2 mg/ml Identical buffer in reference cell necessary (dialyses, lyophylization)

Pros:

- Direct measurement of thermodynamics
- Label free
- Gold standard for T_m measurements
- Suitable for proteins, nuclei acids, lipids, polymers...

Cons:

- Time consuming
- High sample consumption

Fluorescence

It is a physical phenomenon in which "light" is emitted by a substance that has previously absorbed electromagnetic radiation

Also known as differential scanning fluorimetry (= DSF)

High-throughput (96 well plates)

No specialized machine – uses termocycler for RT-PCR

Measures changes of fluorescence of the sample in temperature gradient

- Commercial dyes
- GFP-tag

Commercial dyes (e.g. SYPRO Orange, bis-ANS, Nile Red):

Provide fluorescent signal only when they interact with hydrophobic residues

Limitations:

- Target protein do not have significant hydrophobic patches on the surface
- The target protein is folded at the begginning of experiment
- Dye do not bind to target protein
- Dye do not react with experimental buffer

GFP-tag:

GFP signal changes with its close environment, reports the unfolding of target protein

Limitations:

- T_m of GFP is around 75 °C only usable for less stable proteins
- Potential changes in conformation or oligomeric state of target protein after adding a GFP-tag

TSA in practice

Protein and dye incubated in 96 well plates

Changes in fluorescence monitored

l plates

Pros:

- Quick
- High-throughput
- Excelent for sample comparison
- Affordable instrumentation

Cons:

- Needs dye
- Usage of GFP-tag limited
- Data analysis

Intrinsic fluorescence of proteins

in UV region (λ = 300-360 nm)

nanoDSF = nano Diferential Scanning Fluorimetry

Measures changes of intrinsic fluorescence of the sample in temperature gradient

High-throughput (48 or 96 samples in 1 run)

Low sample consumption (10 μ l)

Ideal for optimal condition screening

nanoDSF

Intrinsic fluorescence of proteins (UV region, $\lambda = 300-360$ nm) is changing according to the local environment

hydrophobic maximum at 330 nm

hydrophilic

maximum at 350 nm

nanoDSF

Aromatic aminoacids (W, Y, F) are hydrophobic and are typicaly located inside the folded protein

With increasing temperature the protein is unfolded

W, Y, F are exposed on the protein surface

Changes in fluorescence

nanoDSF in practice

Design of experiment:

Temperature gradient 20 – 110 °C

Heating rate 1 °C/min quicker higher Tm slower lower Tm

Prometheus

nanoDSF in practice

nanoDSF in practice

	°C	1	2	3	4	5	6	7	8	9	10	11	12
8	А	20 mM Tris, 150 mM NaCl pH 7.5	50 mM maleate pH 2.0	100 mM glycine pH 3.0	100 mM formate pH 4.0	100 mM citrate pH 5.0	100 mM cacodylate pH 6.0	100 mM Hepes pH 7.0	100 mM bicine pH 8.0	100 mM CHES pH 9.0	50 mM borate pH 10.0	100 mM CAPS pH 11.0	100 mM phosphate pH 12.0
		97.1	63.3	78.7	93.0	99.4	95.2	96.9	90.5	86.3	75.2	64.3	56.7
	В	100 mM acetate pH 4.0	100 mM acetate pH 4.5	100 mM acetate pH 5.0	100 mM MES pH 5.5	100 mM MES pH 6.0	100 mM MES pH 6.5	100 mM Na phosphate pH 7.0	100 mM K phosphate pH 7.5	100 mM Tris pH 8.0	100 mM Tris pH 8.5	100 mM glycine pH 9.0	100 mM glycine pH 9.5
		93.9	95.6	96.7	96.5	96.8	95.9	70.2	70.5	94.0	92.1	91.9	88.0
	С	100 mM MES, 100 mM NaCl, pH 6.0	100 mM MES, 200 mM NaCl, pH 6.0	100 mM MES, 500 mM NaCl, pH 6.0		100 mM Na phosphate, 100 mM NaCl, pH 7.0	100 mM Na phosphate, 200 mM NaCl, pH 7.0	100 mM Na phosphate, 500 mM NaCl, pH 7.0	100 mM Na phosphate, 1000 mM NaCl, pH 7.0	100 mM Tris, 100 mM NaCl, pH 8.0	100 mM Tris, 200 mM NaCl, pH 8.0	100 mM Tris, 500 mM NaCl, pH 8.0	100 mM Tris, 1000 mM NaCl, pH 8.0
			97.1	96.9	~	2			93.7	93.3	93.0	93.1	94.9
	D	20 mM Tris, 150 mM NaCl, 100 uM CaCl2, pH 7.5	10 mM HEPES, 150 mM NaCl, 0.05% Tween pH 7.5	12 mM PBS, 130 mM NaCl, 2.7 mM KCl, pH 7.5	12mM PBS, 0.05% Tween 20, pH 7.5	200 mM imidazole, pH 7.5	0.05% Tween 20	5% glycerol	5 mM bME	5% DMSO	5% trehalose	20 mM arginine, 20 mM glutamine	5 mM EDTA
		96.1	95.2			94.2	96.4	98.2	96.2	97.8	97.6	95.0	95.3

nanoDSF

Pros:

- Quick
- High-throughput
- Low sample consumption (10 μl)
- Low concentration (0.1 1 mg/ml)
- No labelling
- Excelent for sample comparison
- User friendly instrumentation

Cons:

- Only for proteins
- W (Y, F) in sequence necessary
- Sensitive to capillary purity
- Delicate manipulation with capillaries

Applications

- Thermal stability determination
- Ligand screening
- Buffer optimization for purification and storage
- Optimization of crystallization conditions
- Batch to batch comparison

C	omparison				
	nasart	DSC 500	TSA	nanoDSF	
BIC	sample	proteins, nucleic acids, lipids, polymers	proteins	proteins	
C,	Sample consumption	high	low	low	
	High-throughput	no	yes	yes	
	Automation	yes	no	no	
	Enthalpy	yes	no	indirect	
A	Fluorescent dye	no	yes	no	
5100		5200		CF BIL	

Literature

Protein unfolding: Konnermann L.: Protein unfolding and denaturants doi: 10.1002/9780470015902.a00030004.pub2

DSC:

Chiu M.H., Prenner E.J.: Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. doi: 10.4103/0975-7406.76463

nanoDSF:

Alexander C.G, Wanner R., Johnson C.M., et al.: Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings doi: 10.1016/j.bbapap.2014.09.016

TSA:

Gao K.,Oerlemans R., Groves M.R.: Theory and application of differential scanning fluorimetry in early-stage of drug discovery.

doi: 10.1007/s12551-020-00619-2.

Biomolecular I nteractions and Crystallography Core Facility

bic@ceitec.cz bic.ceitec.cz

MUN

CF Head

Josef Houser

+420 549 492 527

josef.houser@ceitec.cz