Determination of total protein concentration in body fluids

- proteins
- biuret reaction and its use in practice
- body fluids
- model organisms
- practical part: determination of protein concentration

Proteins

- Peptide-linked ANXING aminoacids (AMK)
- formation on ribosomes
- oligopeptides (2–10 AMK), polypeptides (11–50 / 100 AMK), own proteins (more than 50/100 AMK)

General protein function:

- transport and storage
- ensuring movement
- catalytic, control and regulation
- protective and defensive

Proteins

- Peptide-linked & Wiks
- formation on ribosomes
- oligopeptides (2–10 AMK), polypeptides (11–50 / 100 AMK), own proteins (more than 50/100 AMK)

General protein function:

- building (collagen, elastin, keratin...)
- transport and storage (hemoglobin, transferrin...)
- ensuring movement (actin, myosin...)
- catalytic, controlling and regulatory (enzymes, hormones, receptors)
- protective and defensive (immunoglobulin, fibrin, fibrinogen...)

Proteins

- Peptide-linked AMKs
- formation on ribosomes
- oligopeptides (2–10 AMK), polypeptides (11–50 / 100 AMK), own proteins (more than 50/100 AMK)

Plasma protein function:

- immune (globulins)
- hemostatic (fibrinogen)
- transport (albumins non-polar fats, cholesterol, steroid hormones)
- oncotic pressure maintaining function (albumins)
- pH maintaining (buffering) functions
- control and catalytic (hormones, enzymes)

Body fluids

transport, storage, support functions, etc.

Hydrolymph (lychees, echinoderms)

solution of salts, low protein and free cells

Hemolymph (insects, crustaceans, molluscs)

- total protein about 6%
- dyes, free cells, <u>proteins</u> :
 - storage proteins (especially larval stages)
 - transport proteins (lipophorins, transferrin...)
 - hormones (adipokinetic, prothoracicotropic, bursikon...)
 - vitellogenins (female proteins that form the main part of the yolk sac)
 - immune proteins (lysozyme, coagulation proteins...)

Body fluids

Blood (vertebrates) = plasma + blood elements

- transport of cholesterol, glucose, fats, ions (Fe, Cl and others)
- blood protein (total protein 6-8%): <u>albumins</u> (60% plasma proteins) - bind water, transport of Cu, Zn, fatty acids, hormones

<u>globulins</u> (40% of plasma proteins) - bind fat, hormones, immune reactions (Ig)

<u>fibrinogen</u> , etc. (<1%)

Tissue fluid (extracellular fluid; without plasma proteins)

Lymph (from tissue fluid; immune and transport functions)

Amniotic fluid, cerebrospinal fluid, perilymph and endolymph in the ear, ventricular water and more.

Total protein in vertebrate plasma

	Total		Total	
	protein [g / l]		protein [g / l]	
žako zako	35-45	caiman	47	
Amazon	29-51	grass snake	43	
ara	26-43	viper	55	
parakeet	14-36	crocodile	65	
hawk	24-31	varan	69	
pigeon	15-35			
duck	35-45	STOCK Cattle text	65-80	
		pig	65-85	
sturgeon	45	horse	46-70	
carp	41.5	cat	60-80	
trout	34.6	dog	60-80	

Note: Indicative values (reptiles, fish selected from specific studies, relatively small *n*).

Sem

Determination of proteins - principle of biuret reaction

- in the alkaline environment, the protein chain forms a "matrix" around Cu₂₊ > purple color
- the intensity of the staining is proportional to the number of peptide bonds

Protein determination - laboratory practice

- commercial kits, eg Bio-Rad Protein Assay:
 - modification to microtiter plate
 - 5 μl sample / standard + 25 μl reagent solution A + 200 μl reagent solution B
 - measured at 700 nm after 15 minutes of incubation
 - calibration curve required

Model organisms

silkworm - silk processing

- before the butterfly hatches, it is necessary to dry the cocoons with pupae
- cooking cocoons
- fiber (fibroins)
- silk proteins (sericins)

Model organisms

silkworm - interesting facts

- monophagy
- sexual dimorphism (larger female, targets)

- the adult does not fly and does not eat
- bred in China (3000 BC); today SE Asia, Japan, Brazil
- fiber up to 1.5 km long
- 2 t leaves> 120 kg cocoons> 20 kg silk

Model organisms

house mouse (Mus musculus)

- traditional model organism
- blood (blood plasma / serum + blood cells)
- major proteins
 3-5% albumin

1-3% globulin0.5% fibrinogen

domestic dog (*Canis lupus f. Familiaris*) domestic cat (*Felis silvestris f. Catus* domestic tur (*Bos taurus*) common carp (*Cyprinus carpio*) tench (*Tinca tinca*)

crucian carp (*Carassius carassius*)

Silkworm - Bombyx mori

- Silkworm (Lepidoptera, Bombycidae)
- Silk production

Wax moth -Galleria mellonella

- Wax moth (*Lepidoptera*, *Pyralidae*, *Gallerinae*)
- Bee pests feeds on wax, creates corridors in wax plates lined with fiber
- Excellent model organism metamorphosis, immunity, metabolism, ...

	1	2	3	4	5	6
Biuret reagent	1 ml					
Standard	20 µl					
Blank - H ₂ O		20 µl				
Hemolymph BM			20 µl			
Hemolymph BM				20 µl		
FBS					20 µl	
Carp / linseed serum						20 µl

Total protein (g / l) = a.A1Absorbance of the sample \bigwedge \bigwedge A2Absorbance of the standard

70 (protein concentration in the standard)