

Engineering of protein structures

Outline

- Overview of mutations
- Databases of mutations
- Missense mutations
- Prediction of mutational effects
- Rational design of proteins

Overview of mutations

D Mutations in DNA or mRNA may occur

- Errors in DNA replication during cell division
- Exposure to mutagens (physical or chemical agents)
- Viral infections
- By scientists' intervention

Mutations can be harmful or not

Overview of mutations

Location in the DNA

Non-coding region -> affect gene expression (transcriptional

regulation, mRNA stability, translation rates, location, etc.)

Coding region (exons) -> may affect protein sequence

- **Types**
 - Point mutations a single nucleotide is changed in DNA (or RNA)
 - Substitutions
 - Single nucleotide polymorphism (SNP pronounced "snip")
 - Genetic variation; occurs in > 1 % of population
 - About 10,000,000 in the human genome
 - Insertions or deletions
 - Codons have triple nature (3 nucleotides → 1 amino acid)
 - Potential for frameshift (change in the grouping of codons, resulting in a different translation)
 - Can be very deleterious
 - Other types (duplications, translocations, inversions, etc.)

Point mutations at protein level

D Types of point mutations

Silent (synonymous SNP) – no effect on protein sequence

normal: ctg cag act mutated: ctg caa act L Q T mutated: ctg caa act L Q T

Missense (non-synonymous SNP) – substitution of amino acid

Nonsense – introduction of a stop codon -> protein truncation

Databases of mutations

u Human Genome Variation Society

- http://www.hgvs.org
- Lists all the available databases of human mutations by types

Central mutation databases (>20)

- Substitutions in all genes
- Variability in protein sequences
- Data mainly from literature

Locus-specific databases (about 700)

- Substitutions in specific genes
- Typically manually annotated

Database of Single Nucleotide Polymorphisms - dbSNP

- https://www.ncbi.nlm.nih.gov/snp/
- Repository for both SNP and short deletion and insertion
- For human genome

NIH National Library of Medi National Center for Biotechnology Inform	cine ation	Log in
dbSNP SNP Advanced		Search Help
	dbSNP dbSNP contains human single nucleotide variations, micro with publication, population frequency, molecular conseque both common variations and clinical mutations.	
Getting Started	Submission	Access Data
dbSNP 20th Anniversary	How to Submit	Web Search
Overview of dbSNP	Hold Until Published (HUP) Policies	eUtils API
About Reference SNP (rs)	Submission Search	Variation Services
Factsheet		FTP Download

Online Mendelian Inheritance in Man – OMIM

- http://omim.org/
- Comprehensive database of human genes and genetic phenotypes

About	Statistics 👻	Downloads 🗸	Contact Us	MIMmatch	Donate 🕶	Help 🗸	0		
			Search OMIM					Q	Options 🕶

OMIM Entry Statistics

Number of Entries in OMIM (Updated December 9th, 2020) :

MIM Number Prefix	Autosomal	X Linked	Y Linked	Mitochondrial	Totals
Gene description *	15,554	744	51	37	16,386
Gene and phenotype, combined +	30	0	0	0	30
Phenotype description, molecular basis known #	5,565	349	5	33	5,952
Phenotype description or locus, molecular basis unknown %	1,414	115	4	0	1,533
Other, mainly phenotypes with suspected mendelian basis	1,660	103	3	0	1,766
Totals	24,223	1,311	63	70	25,667

Human Gene Mutation Database - HGMD

- http://www.hgmd.cf.ac.uk/ac/index.php
- Comprehensive collection of mutations in nuclear genes

that underlie or are associated with human inherited disease

	The Human Gene Mutation Database		20002
	at the Institute of Medical Genetics in Cardiff		QIAGEN
немр®	Home Search help Statistics New yenes What is new Background Publications Contact Register Lopin LSDBs Other links		
	Gene symbol V Gol	ymbol: Mis	sense/nonsense 🗸 Go!
	utation Database (HGAD®) represents an attempt to collate all known (published) gene lesions responsible for human inherited disease and is maintained in Cardiff by D.N. Cooper, E.V. Ball, P.D. Stenson, A.D. Phillips, K. Evans, S. Heywood, M.J. lase note that this has up-to-date public version of our database in freely realized only to <u>grantmad</u> usen from academic institutions have predict approximations. All commercial users are required to purchase a lineane from QAGEN®, or commercial partmer A lisense to HCAD Professional is valiable to both unort up-to-date version of the database (visit QIAGEN® to request a <u>institution</u>). Read more about how HCAD is <u>funded</u> You may not copy, store or re-distribute HCAD data writhen permission (i) from the curators or (ii) via your license agreement. Copyright © Cardiff		
<u>Table:</u>	Description:	Public entries: This site. Academic/non-profit users only	Total entries: HGMD Professional 2019.4
	Mutation totals (as of 2020-12-10)	189180	275716
Gene symbol	The gene description, gene symbol (as recommended by the HUGO Nomenclature Committee) and chromosomal location is recorded for each gene. In cases where a gene symbol has not yet been made official, a provisional symbol has been adopted which is denoted by lower-case letters.	7671	10902
cDNA sequence	cDNA reference sequences are provided, numbered by codon.	7729	11079
Genomic coordinates	Genomic (chromosomal) coordinates have been calculated for missense/nonsense, splicing, regulatory, small deletions, small insertions and small indels.	c	250578
HGVS nomenclature	Standard HGVS nomenclature has been obtained for missense/nonsense, splicing, regulatory, small deletions, small insertions and small indels.	c	250862
Missense/nonsense	Single base-pair substitutions in coding regions are presented in terms of a triplet change with an additional flanking base included if the mutated base lies in either the first or third position in the triplet.	106004	159705
Splicing	Mutations with consequences for mRNA splicing are presented in brief with information specifying the relative position of the lesion with respect to a numbered intron donor or acceptor splice site. Positions given as positive integers refer to a 3' (downstream) location, negative integers refer to a 5' (upstream) location.	17183	23868
Regulatory	Substitutions causing regulatory abnormalities are logged in with thirty nucleotides flanking the site of the mutation on both sides. The location of the mutation relative to the transcriptional initiation site, initiaton codon, polyadenylation site or termination codon is given.	3544	4575
Small deletions	Micro-deletions (20 bp or less) are presented in terms of the deleted bases in lower case plus, in upper case, 10 bp DNA sequence flanking both sides of the lesion. The numbered codon is preceded in the given sequence by the caret character (*).	28155	39822
Small insertions	Micro-insertions (20 bp or less) are presented in terms of the inserted bases in lower case plus, in upper case, 10 bp DNA sequence flanking both sides of the lesion. The numbered codon is preceded in the given sequence by the caret character (')	11745	16881
Small indels	Micro-indels (20 bp or less) are presented in terms of the deleted inserted bases in lower case plus, in upper case, 10 bp DNA sequence flanking both sides of the lesion. The numbered codon is preceded in the given sequence by the caret character (?).	2679	3652
Gross deletions	Information regarding the nature and location of each lesion is logged in narrative form because of the extremely variable quality of the original data reported.	14180	i 19491
Gross insertions	Information regarding the nature and location of each lesion is logged in narrative form because of the extremely variable quality of the original data reported.	3445	4945
Complex rearrangements	Information regarding the nature and location of each lesion is logged in narrative form because of the extremely variable quality of the original data reported.	1747	2231
Repeat variations	Information regarding the nature and location of each lesion is logged in narrative form because of the extremely variable quality of the original data reported.	498	546
	9,438,337 queries successfully served since 2007.		

UniProtKB/Swiss-Prot

- http://www.uniprot.org/UniProtKB/
- High-quality manually annotated protein entries with partial lists of

known sequence variants

UniProt BLAST Align P	eptide search ID mapping SP/	ARQL UniProtKB •	*	Advanced Li	st Search	🔒 ᡠ 🖸 He
Status 3 Reviewed (Swiss-Prot)	UniProtKB	251,702,05	9 results			
(570,420)	🖉 🖉 Customize columns	📽 Share 🔹				
Unreviewed (TrEMBL) (251,131,639)	Entry .	Entry Name 🔺	Protein Names 🔺	Gene Names 🔺	Organism 🔺	Length 🔺
Popular organisms Human (204,229)	🗆 A0A0C5B5G6 🧏	MOTSC_HUMAN	Mitochondrial-derived peptide MOTS-c[]	MT-RNR1	Homo sapiens (Human)	16 AA
Rice (148,886) A. thaliana (136,350)	🗆 A0A1B0GTW7 🧏	CIROP_HUMAN	Ciliated left-right organizer metallopeptidase[]	CIROP, LMLN2	Homo sapiens (Human)	788 AA
Rat (93,045) Mouse (86,221)	🗆 A0JNW5	BLT3B_HUMAN	Bridge-like lipid transfer protein family member 3B []	BLTP3B , KIAA0701, SHIP164, UHRF1BP1L	Homo sapiens (Human)	1,464 AA
Taxonomy Filter by taxonomy	🗆 A0JP26 🔒	POTB3_HUMAN	POTE ankyrin domain family member B3	POTEB3	Homo sapiens (Human)	581 AA
Group by Taxonomy	🗆 A0PK11 🏻 🔒	CLRN2 HUMAN	Clarin-2	CLRN2	Homo	232 AA

Locus-specific databases

□ For information on gene-specific databases

ATP-binding cassette, sub-family D (ALD), member 1 300371	A-iii ikeu Aurenoieukouysiropriy Dalabase http://www.x-ald.nl	Ronald R.J.A. Wanders Lab. of Genetic Metabolic Diseases Academic Medical Ctr. Amsterdam, The Netherlands.
ABO ABO blood group (transferase A, alpha 1-3-N- acetylgalactosaminyltransferase; transferase B, alpha 1-3-galactosyltransferase) 110300	Blood Group Antigen Mutation Database http://www.ncbi.nlm.nih.gov/gv/mhc/xslcgi.cgi?cmd=bgmut/home	Olga O. Blumenfeld Department of Biochemistry, Santosh Patnaik, Department of Cell Biology, Albert Einstein College of Medicine New York, NY. U.S.A
ACAD8 acyl-CoA dehydrogenase family, member 8 604773	Innsbruck Metabolic Diseases Pages http://lovd.i-med.ac.at/home.php?select_db=ACAD8	Barbara Lanthaler, Stefanie Kalb and Martina Witsch-Baumgartner
ACADM acyl-CoA dehydrogenase, C-4 to C-12 straight chain 607008	CCHMC - Human Genetics Mutation Database https://research.cchmc.org/LOVD/home.php?select_db=ACADM	Ammar Husami, Brian Richardson, Edita Freeman, Kerry Shooner, Thedia Jacobs and Theru A Sivakumaran
ACADSB acyl-CoA dehydrogenase, short/branched chain 600301	Innsbruck Metabolic Diseases Pages http://lovd.i-med.ac.at/home.php?select_db=ACADSB	Barbara Lanthaler, Stefanie Kalb and Martina Witsch-Baumgartner
ACADVL acyl-CoA dehydrogenase, very long chain 609575	CCHMC - Human Genetics Mutation Database https://research.cchmc.org/LOVD/home.php?select_db=ACADVL	Ammar Husami, Brian Richardson, Edita Freeman, Kerry Shooner, Thedia Jacobs and Theru A Sivakumaran
ACE2 angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 300335	ACE2 database at LOVD http://www.LOVD.nl/ACE2	Johan T. den Dunnen Leiden Univ. Med Centre (acting), Curator vacancy
ACHE acetylcholinesterase (Yt blood group) 100740	Blood Group Antigen Mutation Database http://www.ncbi.nlm.nih.gov/gv/mhe/xstcgi.cgi?emd=bgmut/home	Olga O. Blumenfeld Department of Biochemistry, Santosh Patnaik, Department of Cell Biology, Albert Einstein College of Medicine New York, NY. U.S.A
ACOT9 acyl-CoA thioesterase 9	ACOT9 database at LOVD http://www.LOVD.ni/ACOT9	Johan T. den Dunnen Leiden Univ. Med Centre (acting), Curator vacancy
ACSL4 acyl-CoA synthetase long-chain family member 4 300157	ACSL4 database at LOVD http://www.LOVD.nl/ACSL4	Johan T. den Dunnen Leiden Univ. Med Centre (acting), Curator vacancy
ACTA1 actin, alpha 1, skeletal muscle 102610	Laing Laboratory Skeletal muscle alpha-actin (ACTA1) http://acta1.waimr.uwa.edu.au/home.php?select_db=ACTA1	Nigel Laing and Kristen Nowak

Missense mutations

Missense mutations

Missense mutations

- Mutations affecting structure
 - Stability & folding
 - Aggregation
- Mutations affecting function
 - Binding & catalysis
 - Transport processes
 - Protein dynamics
 - Protein localization

□ Major <u>pathogenic</u> consequences of missense mutation

- Compromised folding the protein has modified folds or presents more unfolded states
- Decreased stability the lifetime of the protein is decreased
- Increased aggregation

- Molecular basis of mutations affecting folding & stability
 - Introduced clashes common for small to large mutations in
 - buried residues

Loss of interactions – most pronounced effects related to H-bonds,

salt bridges and aromatic interactions

Image: Molecular basis of mutations affecting folding & stability

 Altered conformation of protein backbone – mutations concerning residues with specific backbone angles (especially glycine and proline)

NOTE:

- Glycine the most flexible amino acid
- Proline the most rigid

- Changes in charge/hydrophobicity
 - Introducing hydrophilic/charged residue into the protein core
 - Introducing hydrophobic residue onto the protein surface

Mutations can reduce solubility or increase aggregation

- Alterations on the surface residues may affects the solubility (ex: reduction of charge)
- Hydrophobic mutations can increase protein aggregation
- Aggregating proteins usually have high level of β-structures
- Aggregation modulated by short specific sequences
 - Aggregation-prone regions (APRs) are sequences of 5-15 hydrophobic residues
 - They tend to stack and form amyloid fibrils (cross-β spines)
 - Some mutations can increase the propensity to form such amyloid structures

lle50

- **D** Effect on binding and catalysis
 - Binding sites are tuned to bind specific molecules and stabilize transition states
 - Mutations can disrupt or improve the binding and catalysis
- □ Example drug-resistance of HIV-1 protease mutants
 - Loss of interactions with inhibitors

Effect on ligand transport

- Pathways are adjusted to permit transport of specific molecules
- Mutations can speed-up or disrupt the transport, or allow the

transport of different molecules

Effect on protein dynamics

Dynamics enables proteins to adapt to their binding partners and

interchanging between conformations

Mutations can:

 Make regions more rigid (targeting hinge or very mobile regions, ex.: loops) -> reduced adaptability

- Increase flexibility of rigid regions (targeting residues with many contacts in mobile elements) -> increased adaptability
- These change may affect activity, specificity or even recognition

D Effect on protein localization

- After translation, the protein must be <u>translocated</u> to the appropriate cellular compartment
- Translocation can be regulated by short sequences (Signal Peptides) on the N-terminus, by Translocation Complexes, Chaperones, etc.
- Mutations can disrupt or alter the signal, or complex formation -> protein fails to be transported to the correct subcellular location
 - Missing protein -> inactive reaction pathways or unregulated signaling cascades
 - Mislocalized protein -> active in the wrong cellular compartment, causing harmful effects

Prediction of mutational effects

- Identification of mutable residues
- Prediction of the effects on structure
- Prediction of pathogenicity

Prediction of mutational effects - mutable residues

- The effect of mutations on the protein can be predicted directly from the role of the modified residue
- Mutation of evolutionary conserved residues
 - Residues <u>important</u> for protein function or stability tend to be highly conserved over evolution
 - Mutation of highly conserved residues -> often lead to
 - destabilization or loss of function
 - Mutation of highly variable residues -> often neutral

- Mutations affecting stability & folding
 - Mutation of residues with <u>many contacts</u> or with favorable interaction energy -> often destabilizing or compromise folding
 - Mutation of residues in protein core -> often destabilizing
 - Small residue to large -> steric clashes
 - Large to small -> loss of contacts (creation of a void)
 - Polar to non-polar -> loss of H-bond
 - Neutral to charged -> introduction of isolated charge
 - Mutation of residues on protein surface (often neutral)
 - Polar to hydrophobic -> desolvation penalty (destabilizing)
 - Mutation involving <u>proline</u> or <u>glycine</u> -> altered conformation

Mutations affecting function

- Mutation of residues in binding or active sites -> modify binding or catalysis
- Mutation of residues in transport pathways -> modify transport
- Mutation of hinge or mobile residues, residues on loops with many contacts -> modify flexibility
- Mutation of residues directing protein localization -> mislocalization of proteins

D Tools for annotating (identifying) the role of residues

- Individual tools for specific analysis
 - Evolutionary conservation ex:. ConSurf, ...
 - Residue contacts ex: Contact Map Web Viewer, ...
 - Residue interactions ex: Protein Interaction Calculator, ...
 - Accessible surface area ex: AsaView, Naccess, ...
 - Binding sites ex: CASTp, metaPocket 2.0, meta-PPISP, ...
 - Transport pathways ex: CAVER 3.0, POREWALKER, ...
 - Protein dynamics ex: NMA, molecular dynamics, …
 - Protein localization ex: SignalP, TargetP, Phobius, TMHMM, ...

HotSpot Wizard – meta-server combining several tools

- http://loschmidt.chemi.muni.cz/hotspotwizard/
- Homology modelling, MSA, conservation, correlation, pockets and

tunnels detection, docking, stability prediction, design of smart library

Functional hot spots of 1CV2

Return to Results browser

esign mutatio	ns											(>
Single Point	Multiple Poin	t Results	summary										
										Stabil	izing mutatio	<mark>ns</mark> Destabilizing mu Energy is in ke	tations cal/mol
chain	position	residue	Ala	Arg	Asn	Asp	Cys	GIn	Glu	Gly	His	lle l	_ys
А	249	Thr	0.4	-	-	-	-	-	-	-	-	-	-
А	145	Glu	-2.1	-	-	-	-	-	-	-	-	-	-
А	138	lle	7.6	-	-	-	-			-	-		-
А	248	Leu	6.2	-	-	-	-	-	-	-	-		-
А	173	Val	5.1	-									-
А	177	Leu	4.4	-	-	-	-	-	-	-	-	-	-
А	146	Gln	-0.4	-	-	-	-	-	-	-	-		-
А	253	Met	6.7	-	-	-	-	-	-	-	-	-	-
A	147	Asp	-3.5	-	-	-							-
A	136	Met	4.3	-	-	-	-	-	-	-	-	-	-
4	t [111												•
Expo	rt table to CSV									Codon u	sage: Eso	cherichia coli K1	2 🗸
Evaluato m	ultiple point st	ability										Generate repor	t
Evaluate m	utuple point st	ability											

Prediction of mutational effects - mutable residues

Prediction of mutant structures – general workflow

- Mutated residue and its surroundings represented by rotamers from rotamer library (conformations derived form X-ray structures)
- The best set of rotamers selected by Monte Carlo approach
- Optionally energy minimization, backbone flexibility
- Comparing structures of mutant and native protein -> assessment of the mutational effect ($\Delta\Delta G = \Delta G^{Mut} - \Delta G^{Native}$)
- Available tools
 - Geometric: PyMOL; WhatIF
 - Energy-based: FOLDX, Rosetta-ddG
 - Homology: Swiss Model, MODELLER, etc.

Prediction of mutational effects - structure

D PyMOL

- https://pymol.org/
- Mutagenesis module
- User can choose rotamers and visualize potential clashes
- Very fast; fixed backbone; no mutational scoring

Prediction of mutational effects - structure

FOLDX

- http://foldxsuite.crg.eu/
- Stand alone, with plug-in to Yasara modeling tool
- Fast (minutes)
- Fixed backbone conformation
- Construction of single or multiple mutants
- Empirical scoring function for calculation of stability change (ΔΔG)

FOLDX

Prediction of mutational effects - structure
Prediction of effects on structure

Rosetta-ddG

- Under <u>https://www.rosettacommons.org/</u>
- Stand alone with bash and python scripts available
- Slow (hours-days)
- Fixed or flexible backbone conformation
- Construction of single or multiple mutants
- Empirical force field for calculating structure and stability of wild-type and mutant
- Construction of PDB and prediction of stability change (ΔΔG)

AlphaFold 3, ESM Fold, etc. (ML-based)

Only structural prediction (no stability score)

Prediction of pathogenicity

Prediction of impact of mutation on protein function

- Tools employ machine learning approaches
- Trained on functional experimental data
- Predictions can be based on sequence only
- Qualitative results i.e. deleterious versus neutral
- Primarily intended for pathogenicity prediction (leading to disease)

Available tools

- MutPred, SNAP, PhD-SNP, SIFT, MAPP ...
- PredictSNP meta server combining a pipeline of many tools

Prediction of pathogenicity

PredictSNP:

- http://loschmidt.chemi.muni.cz/predictsnp/
- **Combines many tools for Protein or DNA assessment of SNPs**

Consensus classifiers for prediction of disease-related mutations

Consensus classifier for prediction of the effect of *amino acid* substitutions.

Consensus classifier for prediction of the effect of *nucleotide* substitutions.

Prediction of mutational effects - pathogenicity

Prediction of pathogenicity

Prediction of mutational effects - pathogenicity

□ There are many more tools out there

Method	Based on	Training set	Conservation analysis	Structural attributes	Annotations	Website
MutPred	RF	HGMD, Swiss-Prot	SIFT, Pfam, PSI-BLAST	Predicted attributes	_	http://mutpred.mutdb.org/
nsSNPAnalyzer	RF	Swiss-Prot	SIFT	Homologue mapping	-	http://snpanalyzer.uthsc.edu/
Panther	Alignment scores	-	Panther library, HMMs	_	-	http://www.pantherdb.org/tools/ csnpScoreForm.jsp
PhD-SNP	SVM	Swiss-Prot	Sequence environment, sequence profiles	-	-	http://gpcr2.biocomp.unibo.it/cgi/ predictors/PhD-SNP/PhD-SNP.cgi
PolyPhen	Empirical rules	-	PSIC profiles	Homologue mapping/predictions	Swiss-Prot	http://genetics.bwh.harvard.edu/pph/
PolyPhen2	Bayesian classification	Swiss-Prot, neutral pseudo-mutations	PSIC profiles	Homologue mapping/predictions	Pfam domain	http://genetics.bwh.harvard.edu/pph2/
SIFT	Alignment scores	-	MSAs	_	-	http://sift.jcvi.org/
SNAP	NN	PMD, neutral pseudo-mutations	PSIC profiles, Pfam, PSI-BLAST	Predictions	-	http://rostlab.org/services/snap/
SNPs&GO	SVM	Swiss-Prot	Sequence environment, sequence profiles, Panther	-	GO	http://snps-and-go.biocomp.unibo.it/ snps-and-go/

Rational design of proteins

- Protein engineering: sometimes we can use mutagenesis to rationally design proteins according to our needs
- Properties that can be modified by mutagenesis

Rational design of proteins

- Protein engineering: sometimes we can use mutagenesis to rationally design proteins according to our needs
- Properties that can be modified by mutagenesis
 - Stability
 - Function
 - Binging site (catalytic activity or substrate specificity)
 - Macromolecular interface
 - Molecular tunnels/channels
 - Solubility

Prediction of stability change upon mutation

- Structure of mutant protein may not be produced
- Tools often employ
 - Empirical scoring functions
 - Evolutionary conservation analysis (ex: back-to-consensus)
 - Machine learning approaches
- Available tools
 - Energy-based: Rosetta-ddG, FOLDX 🗹
 - Evolution-based: FireProt^{ASR}
 - Hybrid approaches: FireProt, PROSS

- □ FireProt
 - https://loschmidt.chemi.muni.cz/fireprotweb

□ FireProt

□ FireProt

Combined mutant Energy mutant		Evolution mutan	t Wild-type						
		Mutation info		E	Energy information		E	volution information	
visualize	chain	position	ref alt	not conserved	not correlated	rosetta	mutable by majority	mutable by ratio	foldx
- A -								1.	
۲	A	11	D P	~	~	-1.89	×	×	- <mark>1</mark> .39
۲	A	20	E S	~	1		~	1	0.08
۲	A	33	т і	~	~	-1.94	×	×	-1.31
۲	A	119	N H	×	~		~	×	-1
۲	A	145	A L	~	~	-1.71	×	×	-2.77
۲	A	148	T L	~	1	-2.15	×	×	-1.84
۲	A	155	A P	~	~	-0.85	~	~	-1.1
۲	A	164	D M	~	~	-1.85	×	×	-1.18
۲	A	176	c w	~	~	-6.69	×	×	-1.76
۲	A	187	D W	1	~	-2.81	×	×	-1.1
۲	А	198	D S	\checkmark	~	-	~	×	-0.7
۲	А	200	E R	~	1		1	×	-0.4
۲	A	217	N W	~	~	-1.76	~	1	-1.38
۲	A	285	E A	~	1		~	×	-0.38

PROSS

- https://pross.weizmann.ac.il/step/pross-terms/
- Combination of mutations "allowed" by conservation analysis and Rosetta calculations (energy)

□ FireProt^{ASR}

- https://loschmidt.chemi.muni.cz/fireprotasr
- Ancestral sequence reconstruction (ASR)
- Automated ancestral inference & phylogenetic tree
- Useful to find stable ancestral enzymes

□ FireProt^{ASR}

- https://loschmidt.chemi.muni.cz/fireprotasr
- Ancestral sequence reconstruction (ASR)
- Automated ancestral inference & phylogenetic tree
- Useful to find stable ancestral enzymes

SELECT THE STARTING POINT	
SEQUENCE USER DA	Mutations Image: Cluster of the sequence alignment Image: Phylogenetic tree Image: Cluster of the sequence alignment Show substitutions V Cluster of the sequence alignment Show substitutions
STARTING FROM SEQUENCE	812571.1 72401791 72401791 72401791 72401791 812571.1 72401791 724017
Enter own sequence Source : Upload sequence file GKSDKPDLDVFFDDHVRYLDAFIEALGLEEVVLVI HOWGSALGFHWARKNPERVKGIACMEFIRPIPT WDEWPESFARE IFOAFRTADVORELIDONAFIEG Sequence : ALPKCVVRPLTEVEMDHYREPFLKPVDREPLWRF PHELPIAGEPANIVALVEAYMWVLHQSPVPKLLFW GTPGVLIPPAEARLAESLPNCKTVDIGPGLHYLQ EDNPDLIGSELARVLPALHH Validate	
JOB INFORMATION	and particular in the second of the second o
Job title (optional) : E-mail (optional) : I agree with the academic license agreement and confirm that I will use the software exclusively Previous	

RosettaDesign

- http://rosettadesign.med.unc.edu/
- Monte Carlo sampling (random search) to predict minimum-energy structure of mutants
- Predicts free energy changes upon mutations ($\Delta\Delta G$)
- Helps design mutations to optimize the binding site and increase

interactions with a ligand/substrate

PocketOptimizer

- https://github.com/Hoecker-Lab/pocketoptimizer/
- Aimed at maximizing the affinity of a binding site towards a ligand
- Modular pipeline with different tools
 - Flexibility, docking, mutagenesis, energy calculation
 - Predicts global minimum-energy designs

Rational design of proteins - function

FuncLib

- https://funclib.weizmann.ac.il
- To redesign and/or optimize binding site
- Utilizes evolution (conservation) and Rosetta calculations (energy) to introduce multiple-point mutations to modify the properties of the binding site
- Can be used to improve the binding affinity towards a ligand
- Outputs up to 50 multiple-point mutants for protein synthesis

- FuncLib

Parameter	Value
Minimal number of mutations per design	3
Maximal number of mutations per design	5
Minimal PSSM threshold	-1 ~
ΔΔG	5.5 ~
Sequence space	143A FY
	144A P
	151A FMY
	177A LAGNST
	211A ILMV
	247A AGMSTVY
	248A LIMV
Total number of designs in tolerated sequence space	3,313
Reset Verify Proceed	

Rational design of proteins - function

□ AffiLib

- https://affilib.weizmann.ac.il
- To optimize protein-protein interface
- Utilizes evolution (conservation) and Rosetta (energy) to introduce mutations and optimize macromolecular interface
- Suggests mutations on the interface residues to improve the binding affinity
- Outputs up to 50 multiple-point mutants for protein synthesis

Mutation Cutoff Scanning Matrix (mCSM-PPI2)

- http://biosig.unimelb.edu.au/mcsm_ppi2/
- To optimize protein-protein interface
- Based on machine learning, evolutionary data and energy (FoldX)
- Provides mutational $\Delta\Delta G$
- Modes of calculations
 - Single mutation single point mutations on interface
 - Mutation list single mutations accordingly to a user
 - Alanine scanning (all interface residues are mutated to alanine)
 - Systematic position saturation (all interface residues are mutated to all other 19 amino acids)

□ Aggrescan3D; SoluProt (see lecture 7 - Analysis of protein structures)

SolubiS

- https://solubis.switchlab.org/
- To identify stabilizing mutations that reduce the aggregation tendency of a protein
- 1) Identifies exposed APRs
- 2) Introduces "gatekeeper" residues (P, R, K, D and E) into APRs
- 3) Assesses the stability changes of mutations (ΔΔG)

References I

- Ng, P. C. & Henikoff, S. (2006) Predicting the effects of amino acid substitutions on protein function. *Annual Review of Genomics and Human Genetics* 7: 61-80.
- Thusberg, J. & Vihinen, M. (2009) Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. *Human Mutation* **30**: 703-714.
- Potapov, V. *et al.* (2009) Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. *Protein Engineering, Design & Selection* **22**: 553-560.

References II

- Khan, S. & Vihinen, M. (2010) Performance of protein stability predictors. *Human Mutation* **31**: 675-684.
- Bendl, J. *et al.* (2016) PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions. *PLOS Computational Biology* 12: e1004962.
- Musil, M. et al. (2019) Computational Design of Stable and Soluble Biocatalysts. ACS Catalysis **9**: 1033–1054.
- Planas-Iglesias, J. *et al.* (2021) Computational design of enzymes for biotechnological applications. *Biotechnology Advances* 47:107696