

Models of structures

3D structure prediction

3D structure prediction

- homology modeling
- fold recognition
- □ *ab initio* prediction
- "hybrid" approaches
- Assessment
- databases of protein models

Importance of structure

no experimental structure for most of the sequences

5-3D Modelling

□ basic principle – structure is more conserved than sequence

- □ basic principle structure is more conserved than sequence
 - similar sequences adopt practically identical structures

haloalkane dehalogenase LinB (PDB-ID 1iz7) haloalkane dehalogenase DhaA (PDB-ID 1cqw)

sequence identity: ~ 50 %

- □ basic principle structure is more conserved than sequence
 - distantly related sequences still fold into similar structures

haloalkane dehalogenase LinB (PDB-ID 1iz7) chloroperoxidase L (PDB-ID 1a88)

sequence identity: ~ 15 %

number of folds in SCOP database

5-3D Modelling

- □ basic principle structure is more conserved than sequence
 - similar sequences adopt practically identical structures
 - distantly related sequences still fold into similar structures
- builds an atomic-resolution model of the target protein
 based on the experimental 3D structure (template) of a
 homologous protein
- □ the most accurate 3D prediction approach
- □ if no reliable template is available \rightarrow fold recognition or *ab initio* prediction

- the quality of the model depends on the sequence identity
 /similarity between the target and template proteins
- □ For a standard length protein it should be > 25% / > 40%

...MSLGAKPFGE...

target sequence

Database search

- standard sequence-similarity searches
 - comparison of the target sequence to all sequences with known 3D structures in the wwPDB database
 - BLAST, FASTA,...
- profile-based searches
 - more sensitive than standard sequence-similarity searches
 - PSI-BLAST, HHMER, HHblits, ...
- fold recognition methods
 - applied if no template can reliably be identified by the sequence or profile based methods (sequence identity < recommended 25 %)
 - FUGUE, GenTHREADER, pro-sp3-TASSER..

Selection of template

- wrong template = wrong model
- □ more than one possible template may be identified \rightarrow a combination of different criteria to select the final template:
 - sequence identity between the template and target protein
 - coverage between the template and query sequences
 - the resolution of the template structure, number of errors
 - a portion of conserved residues in the region of interest (e.g., binding site residues)
 - •

multiple templates can be used to create a combined model

Sequence alignments

- reliability of alignment decreases with decreasing similarity of the target and template sequences
- quality of alignment is crucial it determines the quality of the final model
- □ the pairwise target-template alignment provided by the database search methods is almost guaranteed to contain errors → more sophisticated methods needed
 - multiple sequence alignment
 - Profile-driven alignments
 - correction of alignment based on the template structure

Sequence alignments

- multiple sequence alignment
 - works with more information than pairwise alignment → more reliable
 - MUSCLE, CLUSTAL Omega, T-Coffee

building model framework

Building model framework

- copying the basic shape of the template to the model
 - if the two aligned residues differ, the backbone coordinates for N, Cα,
 C and O, and often also Cβ can be copied
 - conserved residues can be copied completely to provide an initial guess
 - residues that are not present in the target (because the target can have less residues than the template) are not copied

Loop modelling

- inserting missing residues into the continuous backbone
- prediction of loop conformation is a difficult task (especially for loops > 5-8 residues long
 - knowledge based prediction use of libraries of possible loop conformations known from experimentally determined structures with the same local sequence
 - *ab initio* prediction use of energy functions to find the most optimal conformation, followed by minimization of the structure
 - hybrid approach the loop is divided into small fragments that are all separately compared to known structures

Side-chain modelling

- □ adding side-chains of amino acids to the model backbone
 - □ rotamer libraries common side-chain conformations (rotamers) extracted from high-resolution X-ray structures → possible rotamers explored and scored based on energy function
 - backbone-dependent rotamer libraries the optimal conformation of the side chain depends on the local backbone conformation (5 - 9 neighboring residues) → explored only possible rotamers corresponding to the best backbone matches – greatly reduces conformational search space

Side-chain modelling

backbone-dependent rotamer library

According to the backbone-dependent rotamer library, the backbone favors two different conformations for Tyrosine which appear about equally often in the database

- energy minimization may introduce many errors moving the model away from its correct structure → must be used carefully
- molecular dynamics simulation follows the motions of the protein and mimics the folding process

- finished model contain errors (like any other structure) the number of errors (for a given method) mainly depends on:
 - the percentage of sequence identity between template and target sequence, e.g., 90 %: the accuracy of the model comparable to X-ray structures; 50 %-90 %: larger local errors; identity < 25 %: often very large errors
 - □ the number of errors in the template structure
- problems that occur far from the site of interest may be ignored, others should be tackled

Iteration

- portions of the homology modeling process can be iterated to correct identified errors
 - small errors introduced during the optimization → running a shorter molecular dynamics simulation
 - error in a loop → choosing another loop conformation in the loop modeling step
 - large mistakes in the backbone conformation → repeating the whole process with another alignment or even different template

•

Homology modeling programs

D MODELLER

- http://salilab.org/modeller/
- models built by satisfying the spatial restraints of the C α C α bond lengths and angles, the dihedral angles of the side-chains, and van der Waals interactions
- restraints calculated from the template structures
- available as a web server at different sites, e.g., part of: ModWeb workflow <u>https://modbase.compbio.ucsf.edu/modweb/</u>, GeneSilico server <u>https://genesilico.pl/toolkit/unimod?method=Modeller</u> or
 Bioinformatics toolkit <u>http://toolkit.lmb.uni-muenchen.de/modeller</u>

Homology modeling programs

SWISS-MODEL

- http://swissmodel.expasy.org/
- fully automated protein structure homology modeling server

Only user specified template was used for modelling.

40.33 0.00e-1

[details]*

Ligand information:

Ligands in the template: SO4: 2. Ligands in the model: none.

logs: [Templates]* [Alignment]* [Modelling]* display model: as [pdb]* - as [DeepView project]* - in [AstexViewer]* download model: as [pdb]* - as [Deepview project]* - as [text]*

Sequence Identity [%]:

Quality information:

QMEAN 7-Score: -2.61

Evalue:

[details]*

Model validation

- mostly the same principles as used for the validation of experimental structures
- always check both model and template
 - The model cannot improve the template if this is "bad" in regions
- checks of normality
 - inside/outside distributions of polar and apolar residues
 - bad contacts
 - evaluation of atom/residue environment
- energy-based checks
 - side-chain clashes
 - bond lengths and angles

Model validation programs

QMEAN

- https://swissmodel.expasy.org/qmean/
- composite scoring function for the quality estimation of protein structure models; evaluates torsion angles, solvation and non-bonded interactions and the agreement between predicted and calculated

Global scores Local scores Estimated Residue error **Z-scores of OMEAN Residue error plot OMEAN** Model name 🔮 absolute quality terms 🔮 NEW 0 score 🔮 <1Å >3.5Å **NEW** modbase-0.705 model 6d51f947356cc91f0e1be73c6d7e11d2.pdb 100 200 300 0 [ipa] [pdb] Z-score=-0.74 [png] [table] [png] [plot 1] [plot 2]

secondary structure and solvent accessibility

5-3D Modelling -> Homology modelling (Model validation)

Model validation programs

- □ Verify3D
- □ ANOLEA
- □ PROCHECK
- □ WHATCHECK
- D PROSA II

- predicts the fold of a protein by fitting its sequence into a structural database and selecting the best fitting fold
- □ provides a rough approximation of the overall topology of the native structure → does not generate fully refined atomic models for the query sequence
- can be used when no suitable template structures available for homology modeling
- □ fails if the correct protein fold does not exist in the database
- □ high rates of false positives

□ threading

MSLGAKPFGE...

target sequence

5-3D Modelling -> Fold recognition (Threading)

5-3D Modelling -> Fold recognition (Threading)

- pairwise energy-based methods (threading) protein
 sequence is searched for in a structural database to find the
 best matching structural fold using energy-based criteria
 alignment of the query sequence with each structural fold in the
 - fold library (essentially performed at the sequence profile level)

5-3D Modelling -> Fold recognition (Threading)

- pairwise energy-based methods (threading) protein
 sequence is searched for in a structural database to find the
 best matching structural fold using energy-based criteria
 - 1. alignment of the query sequence with each structural fold in the fold library (essentially performed at the sequence profile level)
 - building a crude model for the target sequence (replacing aligned residues in the template structure with the corresponding residues in the query)

5-3D Modelling -> Fold recognition (Threading)

- pairwise energy-based methods (threading) protein
 sequence is searched for in a structural database to find the
 best matching structural fold using energy-based criteria
 - 1. alignment of the query sequence with each structural fold in the fold library (essentially performed at the sequence profile level)
 - building a crude model for the target sequence (replacing aligned residues in the template structure with the corresponding residues in the query)
 - 3. calculating energy of the raw model

pairwise energy-based methods (threading) – protein
 sequence is searched for in a structural database to find the
 best matching structural fold using energy-based criteria

l is distance in sequence (density normalization required) can be calculated from collections of known structures

5-3D Modelling -> Fold recognition (Threading)

- pairwise energy-based methods (threading) protein
 sequence is searched for in a structural database to find the
 best matching structural fold using energy-based criteria
 - 1. alignment of the query sequence with each structural fold in the fold library (essentially performed at the sequence profile level)
 - building a crude model for the target sequence (replacing aligned residues in the template structure with the corresponding residues in the query)
 - 3. calculating energy of the raw model
 - ranking of the models based on the energetics the lowest energy fold represents the structurally most compatible fold

Fold recognition (Profiles)

□ profile methods

Fold recognition programs

D PHYRE

- http://www.sbg.bio.ic.ac.uk/phyre2/
- profile-based method
- the highest scoring alignments are used to construct full 3D models of the query – missing or inserted regions are repaired using a loop library and reconstruction procedure, side-chains are placed using a fast graph-based algorithm

Fold recognition programs

D PHYRE

Fold Recognition								
View Alignments	SCOP Code	View Model	E-value	Estimated Precision	BioText	Fold/PDB descriptor	Superfamily	
	(length:145) 100% i.d.		9.3e-20	100 %	0.90 Biotext	Globin-like	Globin-like	
	<u>c2bk9A</u> (length:153) 23% i.d.	Jamesi 🙈 📉	7.7e-17	100 %	0.89 Biotext	PDB header:oxygen transport	Chain: A: PDB Molecule:cg9734-pa;	

5-3D Modelling -> Fold recognition (Programs)

Fold recognition programs

RaptorX

- <u>http://raptorx.uchicago.edu/</u>
- provides single-template threading, alignment quality prediction, and multiple-template threading

GenTHREADER

- http://bioinf.cs.ucl.ac.uk/psipred/
- uses a hybrid of the profile and pairwise energy methods
- multiple sequence alignment and secondary structure predictions derived for the query are used as input for threading
- threading results are evaluated using neural networks

- attempts to generate a structure by using physicochemical principles only
- used when neither homology modeling nor fold recognition
 can be applied
- □ search for the structure in the global free-energy minimum
- □ so far still limited success in getting correct structures

Ab initio prediction programs

Rosetta

- <u>http://www.rosettacommons.org/</u>
- software suite for predicting and designing protein structures, protein folding mechanisms, and protein-protein interactions

Ab initio prediction programs

Rosetta

"Hybrid" 3D structure prediction programs

□ I-TASSER

- http://zhanglab.ccmb.med.umich.edu/I-TASSER/
- combines homology modeling, threading and *ab initio* predictions
- No. 1 server for protein structure prediction in previous CASP experiments

Robetta

- <u>http://robetta.bakerlab.org/</u>
- combines homology modeling and *ab initio* predictions
- implements ROSETTA software

AlphaFold1: ML-powered threading

5-3D Modelling -> Machine Learning (AlphaFold)

AlphaFold 2: ML revolution

- Two independent traks for sequence and structure, each ML-powered
- Attention layer at the structure module doing the "trick)
- AF multimer for protein interactions.
- No. 1 server for protein structure prediction in CASP14 (2020) experiment

AlphaFold 3: turning up another notch

- Simplified representations (sequence-based)
- Structural info only optional.
- Simplified network
- Models all sorts of biomolecules.

ML-powered (reverse) folding

Meta

AlphaFold

ESMFold

State of the art homology

modelling approaches.

- Simple problems can be solved by
 - simpler approaches.
- ESMFold: quality length-dependent

RosettaFoldImage: Hallucinates new 3Ds from scratch
(ML learned how structure looks like)ProteinMPNNImage: Solves reverse problem:
from 3D predict optimal sequence.

Assessment of prediction methods

□ CASP (Critical Assessment of techniques for protein

Structure Prediction)

- http://predictioncenter.org/
- biannual international contest providing objective evaluation of the performance of individual prediction methods
- evaluation based on a large number of blind predictions contestants are given protein sequences whose structures have
 been solved, but not yet published results of the predictions are
 compared with the newly determined structure
- competition in several categories

Assessment of prediction methods

- CAMEO (Continuous Automated Model EvaluatiOn)
 - https://www.cameo3d.org/
 - weekly assessment of new structures in the PDB
 - registered prediction servers are sent weekly requests on not-soeasy new structures in the weekly PDB pre-release.
 - Multiple scores considered, normalized average (IDDT) reported
 - Categories:
 - 3D: Prediction of the 3D coordinates of a protein from sequence
 - QE: Model quality Estimation: Assessment of quality measures reported by participant servers

Databases of protein models

ModBase

- http://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi
- database of annotated protein models generated by the automated pipeline including the MODELLER program
- contains ~38 millions models for ~6.5 millions unique sequences

Quality criteria indicate whether the model is considered reliable (green) or unreliable (red).

Target Region	34-301		
Protein Length	301		
Template PDB Code	1r3dA		
Template Region	4-262		
Sequence Identity	12.00%		
🖬 E-Value	2e-25		
GA341	0.18		
🛙 Dataset	nysgxrc_1r3d_3-06		
ModPipe Version	ModPipe1.0		
🖬 Model Date	2006-04-15		

Databases of protein models

- □ SWISS-MODEL repository
 - http://swissmodel.expasy.org/repository/
 - database of annotated protein models generated by the automated homology-modeling pipeline SWISS-MODEL.
 - contains 2.2 millions models for UniProt sequences
- PMDB (Protein Model DataBase)
 - http://srv00.recas.ba.infn.it/PMDB/
 - contains manually built 3D protein models
 - users can download as well as submit models along with related supporting evidence

Databases of protein models

5-3D Modelling -> Databases of predicted structures

References

- Gu, J. & Bourne, P. E. (2009). Structural Bioinformatics, 2nd Edition,
 Wiley-Blackwell, Hoboken, p. 1067.
- Xiong, J. (2006). Essential Bioinformatics. Cambridge University Press, New York, p. 352.
- Schwede, T. & Peitsch, M. C. (2008). Computational Structural Biology: Methods and Applications, World Scientific Publishing Company, Singapore, p. 700.
- Shapiro, B. A. *et al.* (2007). Bridging the gap in RNA structure prediction.
 Current opinion in structural biology 17: 157-165.