

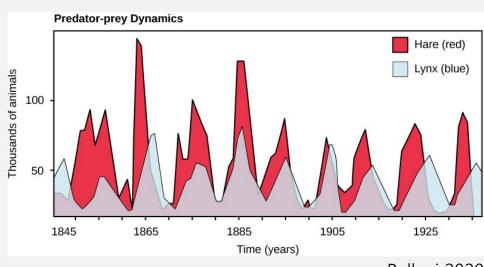
Populations

"Population Ecology of Animals"

Population ecology

a major sub-field of ecology

Deals with description of the structure and the dynamics of populations within species in time and space, and the interactions of populations with environmental factors


- expanding field (Price & Hunter 1995):
 - populations 52 %, communities 9 %, ecosystems 10 %
- main focus on
 - Demography relationship between population structure and dynamics – the core of the discipline
 - Population dynamics describe the change in the numbers of individuals in a population

Motivation example

- populations of member species may show a range of dynamic patterns in time and space
- What regulates populations?

Bellani 2020

density independent factors, food supply, intraspecific competition, interspecific competition, predators, parasites, diseases

Utilisation

Conservation biology

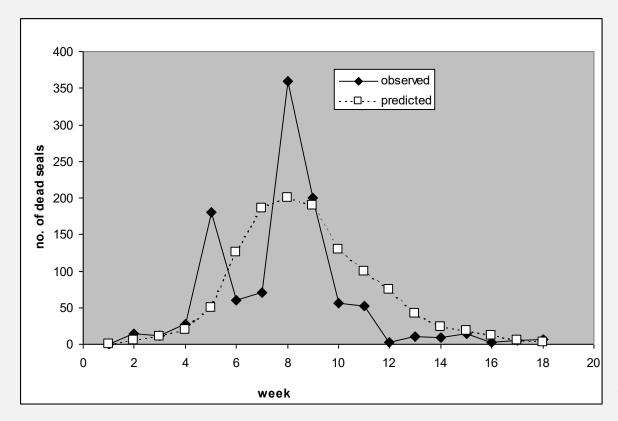
- ▶ World Conservation Union (IUCN) uses several criterions (population size, generation length, population decline, fragmentation, fluctuation) to assess species status
- ▶ Population viability analysis estimates the extinction probability of a taxon based on known life history, habitat requirements, threats and any specified management options

Saiga tatarica

- ▶ critical: 50% probability of extinction within 5 years
- ▶ endangered: 20% probability of extinction within 20 years
- ▶ vulnerable: 10% probability of extinction within 100 years

Biological control

- to assess ability of a natural enemy to control a pest
- ▶ in 1880 *Icerya purchasi* was causing infestations so severe in California citrus groves that growers were burning their trees


Rodolia cardinalis (Coccinellidae) eating Icerya purchasi (Hemiptera)

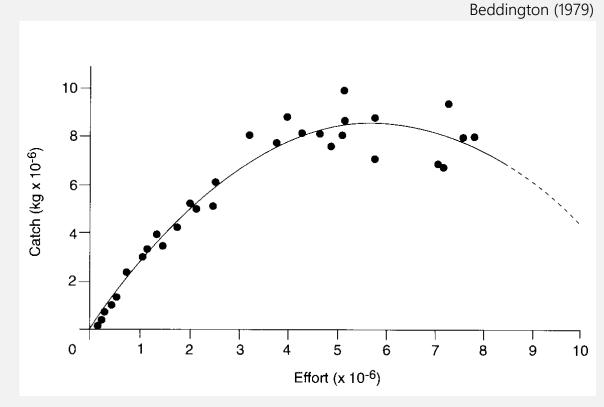
- ▶ in winter 1888-1889 *Rodolia cardinalis* and *Cryptochaetum* sp. were introduced into California from Australia, growers took the initiative and applied the natural enemies themselves
- ▶ by fall 1889 the pest was completely controlled
- Rodolia cardinalis has been exported to many other parts of the world
- ▶ the interest of growers and the public in this project was due to its spectacular success: the pest itself was showy and its damage was obvious and critical

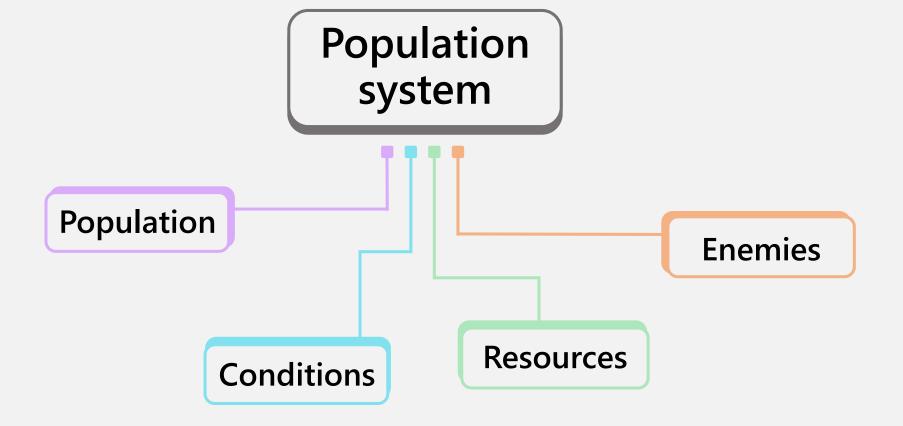
Epidemiology

- ▶ to predict the diffusion of a disease and to plan a vaccination
- ▶ phocine distemper virus was identified in 1988 and caused death of 18 000 common seals in Europe
- ▶ during 4 months the disease travelled from Denmark to the UK

Observed and predicted epidemic curves for virus in common seals in the UK

Grenfell et al. (1992)


Harvesting


- ▶ to predict maximum sustainable harvest in fisheries and forestry but also used to regulate whale or elephant hunting
- ▶ when population is growing most rapidly (K/2) then part of population can be harvested without causing extinction

Relationship between capture and fishing effort

Panulirus cygnus

- population ecology aims to study interactions among components of the system
- ▶ a dynamic system characterised by events and processes

Population

Biosphere

- Landscape
- Ecosystem
- Communities
- Populations
- Organisms
- Organ systems
- Organs
 - Tissues
 - Cells
 - Organelles
 - Molecules

- ▶ Hierarchical structure
- ▶ Defines fitness (relative genetic contribution to the next generation) of an individual based on his response to a current situation

A group of organisms of the same species that occupies a particular area at the same time and is characterised by an average characteristic (e.g., mortality)

- Particular area area in which a change in density is mainly due to mortality and natality not due to emigration an immigration
- ▶ Studies using proximate approach how the response happened

Events & Processes

- ▶ Event an identifiable change in a population
- ▶ Process a series of identical events (in time)
 - rate of a process number of events per unit time

Event Process Natality (birth rate) **Birth** [inds] **Death** [inds] **Mortality** (mortality rate) **Growth** (growth rate) **Increment** [gram] Population increase **Increment** [number] (rate of increase) Consumption **Acquisition of food** [gram] (consumption rate)

Population characteristics

Events

Individual Population

Developmental stage

Age

Size

Sex

Territorial behaviour

Stage structure

Age structure

Size structure

Sex ratio

Spatial distribution

Processes

Individual

Individual growth

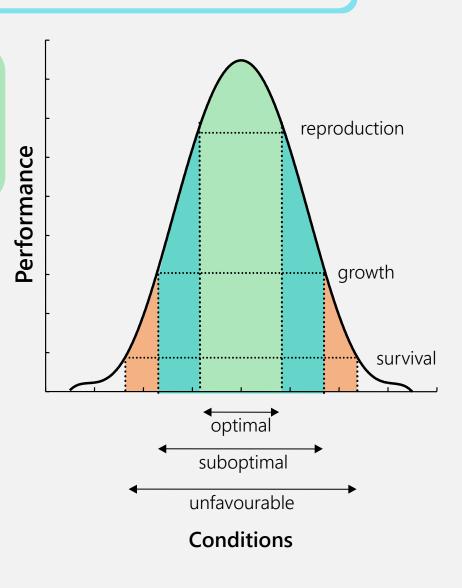
Aging

Reproduction

Death

Population growth

Age structure change


Natality

Mortality

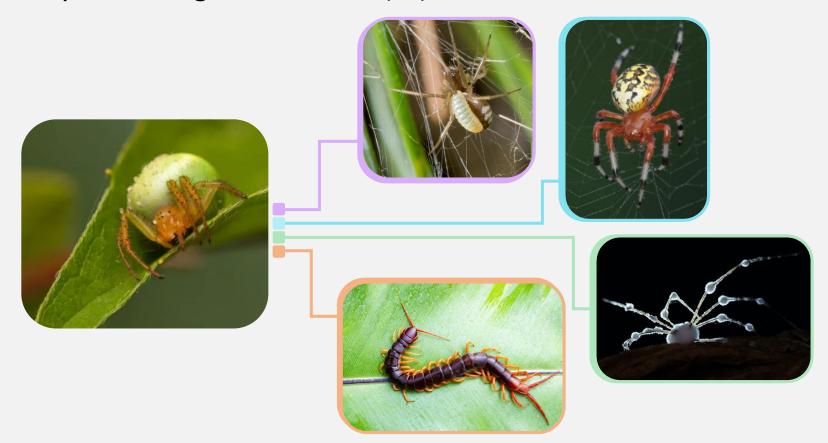
Conditions

Inherent biotic and abiotic characteristics of the environment (pH, salinity, temperature, moisture, wind speed, etc.)

- ▶ independent of population size
- affect the population limit population size
- not consumed by population
 - no feedback mechanisms
 - do not regulate population size
- exogenous effect random and forcing processes

Resources

Any entity whose quantity is reduced (food, space, water, minerals, oxygen, sun radiation, etc.)


- modified (reduced) by populations
- ▶ defended by individuals (interference competition self-regulation)
- ▶ regulate population size bottom-up regulation
- ▶ renewable and non-renewable resources (space)

Renewable resources

- ▶ Type 1 regeneration centre outside the population system
 - no effect of the consumer (e.g., oxygen, water)
- ▶ Type 2 regeneration centre inside of the population system
 - influenced by the consumer (e.g., prey)
- ▶ Type 3 regeneration centre inside of the population system
 - access to the resource via secondary consumer (e.g., nitrogen)

Enemies

- competitors, predators, (macro) parasites, (micro) pathogens
- negative effect on the population
- ▶ top-down regulation of the population

