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1.1 INTRODUCTION

The overall objective of this chapter is to understand macroscopic properties such
as pressure and temperature on a microscopic level. We will find that the pressure
of an ideal gas can be understood by applying Newton’s law to the microscopic
motion' of the molecules making up the gas and that a comparison between the
Newtonian prediction and the ideal gas law can provide a function that describes
the distribution of molecular velocities. This distribution function can in turn be
used to learn about the frequency of molecular collisions. Since molecules can react
only as fast as they collide with one another, the collision frequency provides an
upper limit on the reaction rate.

The outline of the discussion is as follows. By applying Newton’s laws to the
molecular motion we will find that the product of the pressure and the volume is
proportional to the average of the square of the molecular velocity, <v?>, or equiv-
alently to the average molecular translational energy e. In order for this result to be
consistent with the observed ideal gas law, the temperature T of the gas must also
be proportional to <v?> or <e>. We will then consider in detail how to determine
the average of the square of the velocity from a distribution of velocities, and we
will use the proportionality of T with <v2> to determine the Maxwell-Boltzmann
distribution of speeds. This distribution, F(v) dv, tells us the number of molecules
with speeds between v and v + dv. The speed distribution is closely related to the dis-
tribution of molecular energies, G(e) de. Finally, we will use the velocity distribution
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B Figure 1.1

All the molecules in the box that are moving toward the z-y plane will strike the wall.

Of course, not all molecules will be traveling with the same velocity v,. We will
learn below how to characterize the distribution of molecular velocities, but for now
let us simply assume that the pressure will be proportional to the average of the
square of the velocity in the x direction, p = n"m<v2>.° The total velocity of an
individual molecule most likely contains other components along y and z. Since
v = iv, + ju, + kv, % where ¢, j, and kare unit vectors in the x, y, and z direc-
tions, respectively, v2 = v2 + v2 + v? and <v*> = <v?> + <v?> + <v}>.In
an isotropic gas the motion of the molecules is random, so there is no reason for the
velocity in one particular direction to differ from that in any other direction. Con-
sequently, <v2> = <v2?> = <v?> = <v?>/3. When we combine this result with
the calculation above for the pressure, we obtain

1 *
p=3n m<v®>. 1.1

Of course, n* in equation 1.1 is the number of molecules per unit volume and can
be rewritten as nN,/V, where N, is Avogadro’s number and 7 is the number of
moles. The result is

py = —nNm<v*>, (1.2)

o |

Since the average kinetic energy of the molecules is <e> = Im<v®>,
another way to write equation 1.2 is

2
pV = gnNA<e>. aa.3)

Equations 1.2 and 1.3 bear a close resemblance to the ideal gas law, pV = nRT.
The ideal gas law tells us that the product of p and V will be constant if the tem-
perature is constant, while equations 1.2 and 1.3 tell us that the product will be
constant if <v?> or <e> is constant. The physical basis for the constancy of pV
with <v®> or <e> is clear from our previous discussion. If the volume is

“In this text, as in many others, we will use the notation <x> or X to mean “the average value of x.”
9Throughout the text we will use boldface symbols to indicate vector quantities and normal weight
symbols to indicate scalar quantities. Thus, v = Ivl. Note that vi=v-y=202
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(138 X 107 J/K)(300 K)
a [(28/6.02 X 10%)]

= 2,67 X 10° (m/s)? = (516 m/s)>

To summarize the discussion so far, we have seen from equation 1.2 that pV is
proportional to <v?> and that the ideal gas law is obtained if we take the defini-
tion of temperature to be that embodied in equation 1.5. Since <e> = Im<v>,
both temperature and pV are proportional to the average of the square of the veloc-
ity. The use of an average recognizes that not all the molecules will be moving with
the same velocity. In the next few sections we consider the distribution of molecu-
lar speeds. But first we must consider what we mean by a distribution.

1.4 DISTRIBUTIONS, MEAN VALUES, AND
DISTRIBUTION FUNCTIONS

Suppose that five students take a chemistry examination for which the possible

grades are integers in the range from 0 to 100. Let their scores be S; = 68, S, = 76,

S, = 83, S, = 91, and S5 = 97. The average score for the examination is then
S;+8+8+S8,+8 14

<§>= =—3S's, 1.7)
Ny Ny 21

where Ny = 5 is the number of students. In this case, the average is easily calcu-
lated to be 83.

Now suppose that the class had 500 students rather than 5. Of course, the aver-
age grade could be calculated in a manner similar to that in equation 1.7 with an
index i running from 1 to Ny = 500. However, another method will be instructive.
Clearly, if the examination is still graded to one-point accuracy, it is certain that
more than one student will receive the same score. Suppose that, instead of sum-
ming over the students, represented by the index i in equation 1.7, we form the
average by summing over the scores themselves, which range in integer possibili-
ties fromj = 0 to 100. In this case, to obtain the average, we must weight each score
S; by the number of students who obtained that score, N}

1 100
<8§>=— Y SN, (1.8)
NT j=0

Note that the definition of N; requires that ZN; = Nr. The factor 1/Ny in equation
1.8 is included for normalization, since, for example, if all the students happened
to get the same score S; = S then

1 S
<=t Ssn=SSN=s )
Ny 5 Nr 5

Now let us define the probability of obtaining score S; as the fraction of stu-
dents receiving that score:

N,

P, = Fl (1.10)
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or, more generally for any observable quaAntity,A

<> = | P(Q)Q dO. (1.16)

Equation 1.16 will form the basis for much of our further work. The probabil-
ity function P(Q) is sometimes called a distribution function, and the range of the
integral is over all values of Q where the probability is nonzero. Note that normal-
ization of the probability requires

f P(Q)dQ = 1. (1.17)

The quantity l(x)I? dx is simply a specific example of a distribution function. '
Although knowledge of quantum mechanics is not necessary to solve it, you may
recognize a connection to the particle in the box in Problem 1.7, which like Exam-
ple 1.3 is an exercise with distribution functions.

example 1.3

Determining Distribution Functions

Objective Bees like honey. A sphere of radius ry is coated with honey and
hanging in a tree. Bees are attracted to the honey such that the
average number of bees per unit volume is given by Kr~>, where
K is a constant and r is the distance from the center of the sphere.
Derive the normalized distribution function for the bees. They can
be at any distance from the honey, but they cannot be inside the
sphere. Using this distribution, calculate the average distance of a
bee from the center of the sphere.

Method First we need to find the normalization constant K by applying
equation 1.17, recalling that we have a three-dimensional problem
and that in spherical coordinates the volume element for a problem
that does not depend on the angles is 47772 dr. Then, to evaluate the
average, we apply equation 1.16.

Solution Recall that, by hypothesis, there is no probability for the bees
being at r < ry, so that the range of integration is from 7, to
infinity. To determine K we require

f (Kr~5) 4idr = 1, (1.18)

o
or

[ee]
_ duk (1.19)

00 —2
477'KJ r3dr=1= 477K<~——r ) >
ro 27"0

2

7o

so that
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1.5.2 The Velocity Distributions Are Indépendent and Uncorrelated

We now consider the relationship between the distribution of x-axis velocities and
y- or z-axis velocities. In short, there should be no relationship. The three compo-
nents of the velocity are independent of one another since the velocities are uncor-
related. An analogy might be helpful. Consider the probability of tossing three hon-
est coins and getting “heads” on each. Because the tosses f; are independent,
uncorrelated events, the joint probability for a throw of three heads, P(f, = heads,
t, = heads, t; = heads), is simply equal to the product of the probabilities for the
three individual events, P(t; = heads) X P(t, = heads) X P(t; = heads) =
1 x4 X %. Inasimilar way, because the x-, y-, and z-axis velocities are independent
and uncorrelated, we can write that

F(v,,v,,0,) = F(v,)F(v,)F(v,). .21)

‘We can now use the conclusion of the previous section. We can write, for exam-
ple, that F(v,) = f(v?) and similarly for the other directions. Consequently,

F(v,,0,,0,) = Fu)F(0,)F(,) = fE202F02). (1.22)

What functional form has the property that fla + b + ¢) = fa)f(b)f(c)? A lit-
tle thought leads to the exponential form, since exp(a + b + ¢) = e%P?¢. It can be
shown, in fact, that the exponential is the only form having this property (see
Appendix 1.1), so that we can write

F(v,) = f(v}) = K exp(*xv?), 1.23)

where K and « are constants to be determined. Note that although « can appear
mathematically with either a plus or a minus sign, we must require the minus sign
on physical grounds because we know from common experience that the probabil-
ity of very high velocities should be small.

The constant K can be determined from normalization since, using equation
1.17, the total probability that v, lies somewhere in the range from —eo to +oo
should be unity: :

J F(v,)dv, = 1. (1.24)
Substitution of equation 1.23 into equation 1.24 leads to the equation

12

1=K j exp(—kv?)do, = K(%) , (1.25)

—00

where the integral was evaluated using Table 1.1. The solution is then K = («/7r)"/2.

1.5.3 <v*> Should Agree with the Ideal Gas Law

The constant  is determined by requiring <v?> to be equal to 3kT/m, as in equa-
tion 1.6. From equation 1.16 we find

(=] 1/2 foo
<pl> = J V2 F(v,)dv, = (:r) J v? exp(—kv?)dv,. (1.26)

-0 —00

The integral is a standard one listed in Table 1.1, and using its value we find that

1/ kN2 (a2 1
2 = —| — —_— = —
<vp> = (W) (K3 " (1.27)
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One-dimensional velocity distribution for a mass of 28 amu and two temperatures.

1.5.4 The Distribution Depends Only on the Speed

Note that the right-hand side of equation 1.30 depends on v? and not on the direc-
tional property of v. When we have a function that depends only on the length of the
velocity vector, v = Ivl, and not on its direction, we can be more precise by saying
that the function depends on the speed and not on the velocity. Since F(v,,v,,0,) =
f(v?) depends on the speed, it is often more convenient to know the probability that
molecules have a speed in a particular range than to know the probability that their
velocity vectors will terminate in a particular volume. As shown in Figure 1.3, the
probability that the speed will be between v and v + dv is simply the probability
that velocity vectors will terminate within the volume of a spherical shell between the
radius v and the radius v + dv. The volume of this shell is dv, dv, dv, = 4v*dv, so
that the probability that speed will be in the desired range isf

fAn alternate method for obtaining equation 1.31 is to note that dv, dv, dv, can be written as vsin@
d# d¢ dv in spherical coordinates (see Appendix 1.2) and then to integrate over the angular coordinates. Since
the distribution does not depend on the angular coordinates, the integrals over d§ and d¢ simply give 477 and
we are left with the factor v dv.

2@ (ar 3/2 2
2 m mv
F(v)dv = | — xpl ——— )sinfd
(v)dv J—oL:ov (2 kT) exp( 2kT>Sm9 vdfdep

2 T 3/2 2
= [ ap[ sinaagui{ ) (_1"'_>
J A ¢L=usm0 6v (27rkT eXP\ = i dv

A more complete description of spherical coordinates is found in Appendix 1.2.

11
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1.6: c,,, = <v?>12 = (3kT/m)'”. Another speed is the mean speed defined by
using equation 1.16 to calculate <v>:

o

J : :uF(v)dv

0

[ e P 32 mu? ; 81<T)'52
A’ xpl —=—= = ;
vm?| S ) exp| o Jdu mn

) /

1l

<p>
(1.32)

Il

where the integral was evaluated using Table 1.1 as described in detail in Example
1.4. Finally, the distribution might also be characterized by the most probable speed,
c*, the speed at which the distribution function has a maximum (Problem 1.8):

7 172
= (£> g (1.33)

m

13

example 1.4

Using the Speed Distribution

Objective The speed distribution can be used to determine averages. For
example, find the average speed, <v>.

Method Once one has the normalized distribution function, equation 1.16
gives the method for finding the average of any quantity. Identifying
Q as the velocity and P(Q) dQ as the velocity distribution function
given in equation 1.31, we see that we need to integrate vF(v) dv
from limits v = 0 to v = oo.

o) (] 3
Solution <> = J vF(v)dv = f 47rv3( i/z)exp(—azvz)dv
0 0 2]

(1.34)
= —=| a*v’exp(—a’v?)dv,
\/EL
where a = (m/2kT)"2. We now transform variables by letting x =

av. The limits will remain unchanged, and dv = dx/a. Thus the
integral in equation 1.34 becomes

chxp(—xz)dx: = -
0

aVm?2

B 2 ~2k_T 1/2 B .81\,_'7‘ 1/2
- \/7_7 m “ \mm ?

where we have used Table 1.1 to evaluate the integral.

4
a\Vm

(1.35)

The molecular speed is related to the speed of sound, since sound vibrations
cannot travel faster than the molecules causing the pressure waves. For example, in
Example 1.5 we find that the most probable speed for O, is 322 m/s, while the
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Various average speeds as a function of mass for 7= 300 K.

atoms having speeds in excess of v,, while minuscule (about
1073, is still 10> times larger than the fraction of oxygen
molecules having speeds in excess of v,! As a consequence, the
composition of the atmosphere is changing; much of the helium
released during the lifetime of the planet has already escaped into
space. A plot of various speeds as a function of mass for 7' = 300
K is shown in Figure 1.6.

1.5.5 Experimental Measurement of the Maxwell Distribution of Speeds

Experimental verification of the Maxwell-Boltzmann speed distribution can be
made by direct measurement using the apparatus of Figure 1.7. Two versions of the
measurement are shown. In Figure 1.7a, slits (S) define a beam of molecules mov-
ing in a particular direction after effusing from an oven (O). Those that reach the
detector (D) must successfully have traversed a slotted, multiwheel chopper by trav-
eling a distance d while the chopper rotated through an angle ¢. In effect, the chop-
per selects a small slice from the velocity distribution and passes it to the detector.
The speed distribution is then measured by recording the integrated detector signal
for each cycle of the chopper as a function of the angular speed of the chopper.

A somewhat more modern technique, illustrated in Figure 1.7b, clocks the time
it takes for molecules to travel a fixed distance. A very short pulse of molecules leaves
the chopper at time 7 = 0. Because these molecules have a distribution of speeds, they
spread out in space as they travel toward the detector, which records as a function of
time the signal due to molecules arriving a distance L from the chopper.

15
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Intensity (arbitrary scale)

| ] |
0 200 400 600
Flight time (us)

B Figure 1.8

Time-of-flight measurements: intensity as a function of flight time.

From J. F. C. Wang and H. Y. Wachman, as illustrated in E. O. Goodman and H. Y. Wachman, Dynamics of Gas-
Surface Scattering (Academic Press, New York, 1976). Figure from “Molecular Beams” in DYNAMICS OF
GAS-SURFACE SCATTERING by F. O. Goodman and H. Y. Wachmann, copyright © 1976 by Academic
Press, reproduced by permission of the publisher. All rights or reproduction in any form reserved.

using this “time-'of—ﬂight” technique. The open circles are the detector signal, while
the smooth line is a fit to the data of a function of the form expected for S(¢). The
best fit parameter gives a temperature of 300 K.

1.6 ENERGY DISTRIBUTIONS

It is sometimes interesting to know the distribution of molecular energies rather
than velocities. Of course, these two distributions must be related since the molec-
ular translational energy e is equal to 3mv?. Noting that this factor occurs in the
exponent of equation 1.31 and that de = mv dv = (2me)"2 dv, we can convert
velocities to energies in equation 1.31 to obtain

2 32
Gle)de = 47'( E)( m..> \l( : ) o
m )\ 2mkT. T e
= ’1_( l, )‘«3 \-"fé ,\‘(-i) i
kT R Ty

The function G(e) de tells us the fraction of molecules which have energies in the
range between € and € + de. Plots of G(e) are shown in Figure 1.9.

The distribution function G(€) can be used to calculate the average of any func-
tion of € using the relationship of equation 1.16. In particular, it can be shown as
expected that <e> = 3k7/2 (see Problem 1.9).

Let us pause here to make a connection with thermodynamics. In the case of
an ideal monatomic gas, there are no contributions to the energy of the gas from
internal degrees of freedom such as rotation or vibration, and there is normally very

(1.37)

17
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The fraction of molecules having energy in excess of € as a function of €*/kT.

Problem 1.10 shows that this integral is given by

fle) = —z—ae_“z + erfc(a), (1.41)

Vo

where a = (€'/kT)"? and erfc(a) is the co-error function defined in Appendix 1.3. A
plot of f(€") as a function of €"/kT is shown in Figure 1.10. Note that for
€" > 3kT. the function f€”) is nearly equal to the first term in equation 1.41,
2V/(€'/mwkT)exp(—€/kT), shown by the dashed line in the figure. Thus, the frac-
tion of molecules with energy greater than € falls off as Ve exp(—e€'/kT), provided
that € > 3kT.

1.7 COLLISIONS: MEAN FREE PATH
AND COLLISION NUMBER

One of the goals of this chapter is to derive an expression for the number of colli-
sions that molecules of type 1 make with molecules of type 2 in a given time. We
will argue later that this collision rate provides an upper limit to the reaction rate,
since the two species must have a close encounter to react.

The principal properties of the collision rate can be easily appreciated by any-
one who has ice skated at a local rink. Imagine two groups of skaters, some rather
sedate adults and some rambunctious 13-year-old kids. If there is only one kid and
one adult in the rink, then the likelihood that they will collide is small, but as the num-
ber of either adults or kids in the rink increases, so does the rate at which collisions

19
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Molecule 1 sweeps out a cylinder of area 7b2 .. Any molecule of type 2 whose center is within
the cylinder will be struck.

Consider a molecule of type 1 moving through a gas with a speed equal to the
average magnitude of the relative velocity <v,>. Figure 1.12 shows that any mole-
cule of type 2 located in a cylinder of volume b2, <v >At will then be struck in the
time At If the density of molecules of type 2 is n;, then the number of collisions one
molecule of type 1 will experience with molecules of type 2 per unit time is

Z, = wh?, <v.>n;. (1.42)

Of course, for a molecule of type 1 moving through other molecules of the same type,
Z, = wbi <v >0 = wd*<v,>n,, (1.43)

where b2, has been replaced by d? since ry + r, = 2r; = d. The quantity wb2,, is
known as the hard-sphere collision cross section. Cross sections are generally given
the symbol o

Equation 1.42 gives the number of collisions per unit time of one molecule of
type 1 with a density n; of molecules of type 2. The fotal number of collisions of
molecules of type 1 with those of type 2 per unit time and per unit volume is found
simply by multiplying by the density of type 1 molecules:

Zyy = Zony = b2y, <> nin,. (1.44)

Note that the product njn, is simply proportional to the total number of pairs of col-
lision partners.

By a similar argument, if there were only one type of molecule, the number of
collisions per unit time per unit volume is given by

Z, = %Zln’{ = % L <v.> (n7)% (1.45)
The factor of % is introduced for the following reason. The collision rate should be
proportional to the number of pairs of collision partners. If there are n molecules,
then the number of pairs is n(n — 1)/2, since each molecule can pair with n — 1
others and the factor of 2 in the denominator corrects for having counted each pair
twice. If n is a large number, then we can approximate n(n — 1) as n?, and since the
number of molecules is proportional to the number density, we see that the number
of pairs goes as (n})%2.

It remains for us to determine the value of the relative speed, averaged over the
possible angles of collision and averaged over the speed distribution for each mole-
cule. One way to arrive quickly at the answer for a very specific case is shown in

iBecause of the collisions, the molecule under consideration will actually travel along a zigzag path, but
the volume swept out per unit time will be the same.

21
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Method Use equation 1.44, remembéring to convert the abundances to
number densities at 300 K and calculating the average relative
velocity by use of equation 1.46.

Solution First find the total number density n* at 1 atm: n* = (W/V)N, =
(p/RT)N, = (1 atm)(6.02 X 10% molec/mole)/[(0.082 L atm mol !
K=1)(300 K)] = 2.45 X 1022 molec/L. Next determine the number
densities of NO and O;, each being the total density times 0.2 X
1075 n"(NO) = n"(0;) = (0.2 X 1076)(2.45 X 10%) = 4.9 X 101
molec/L. The average relative velocity is <v,> = (8kT/mp)? =
[8(1.38 X 10~3 J K~1)(300 K)(6.02 X 10% amu/g)(1000 g/kg)/
(w(48 X 30/78) amu)]"%= 586 m/s. The average diameter is
(300 + 375 pm)/2 = 337.5 pm. Then Z;, = m(337.5 X 10712 m)?
(586 m/s)(4.9 X 105 molec/L)X(1 L/A0-3 m¥)? = 50 X 102
collisions s~! m™3, If every collision resulted in a reaction, this
would be the number of reactions per unit second per cubic meter.

23

A quantity related to Z, is the mean free path, A. This is the average distance a
molecule travels before colliding with another molecule. If we divide the average
speed <v> in meters per second by the collision number Z, in collisions per sec-
ond, we obtain the mean free path in meters per collision:

<v> <>
A== = S Lo .
Z ad V2 <v>n,

1.47)
| ( )

V2 wdn,

Note that the mean free path is inversely proportional to pressure. The mean free path
will be important in Chapter 4, where we will see that the transport of heat, momen-
tum, and matter are all proportional to the distance traveled between collisions.

example 1.7

The Mean Free Path of Nitrogen

Objective Find Z, and the mean free path of N, at 300 K and 1 atm given that
the molecular diameter is 218 pm.

Method Use equation 1.46 to calculate <v,>, equation 1.43 to calculate
Z,, and equation 1.47 to calculate A.

Solution We start by calculating <v,> = (8kT/mu)"?, where . = 28 X
28/(28 + 28) = 14 amu.

8(1.38 X 1072 JK')(300 K)(6.02 X 10 amu/g)(1000 g/kg) .
(3.1415 X 14 amu)

<v> =

(1.48)
= 673 m/s.
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the relative velocity,
8kT\'/2
<v> = V2 <v> = (TM) , (1.46)

and the mean free path,
<v> 1
Z, \2mdn,

These concepts form the basis for further investigation into transport properties and
chemical reaction kinetics.

=

(1.47)

25

appendix 1.1

The Functional Form of the Velocity Distribution

We demonstrate in this appendix that the exponential form used in equation 1.23
is the only function that satisfies the equation fla + b + ¢) = fa)fib)fc). Consider
first the simpler equation

f@) = fla)f(b), (1.50)

where z = a + b. Taking the derivative of both sides of equation 1.50 with respect
to a we obtain

o) dc

4z da = f'(a)f(b). (1.51)

On the other hand, taking the derivative of both sides of equation 1.50 with respect
to b, we obtain

) dz _ e
4z db = f(a)f'(b). (1.52)
Since z = a + b, dz/da = dz/db = 1. Consequently,
d
P — paye) = star ). 15
Division of both sides of the right-hand equality by fa)f(b) yields
fla) _f®)
e B 1.54
fla) ~ 10) (s

Now the left-hand side of equation 1.54 depends only on a, while the right-hand
side depends only on b. Since a and b are independent variables, the only way that
equation 1.54 can be true is if each side of the equation is equal to a constant, *K,
where « is defined as nonnegative:

10 7o) _

= *k

fa) f(b)

*k. (1.55)
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~

) rsin 6d¢
rsin 6
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@ Figure 1.15

The volume element in spherical coordinates.

sphere times the thickness dr (for clarity, the thickness dr is not shown in the dia-
gram). The surface area is given by the arc length on the longitude, r do, times the
arc length on the latitude, r sin 6 d¢. Thus, the volume element is dV = r’sin 6 d6
d¢ dr.
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appendix 1.3

The Error Function and Co-Error Function

It often occurs that we need to evaluate integrals of the form of those listed in
Table 1.1 but for limits less than the range of 0 to infinity. For such evaluations it
is useful to define the error function: ’

A
erf(x) = —j e " du. (1.58)
Vil
From Table 1.1 we see that for x = oo, the value of the integral is \/\jT__ZZ, so that
erf(ee) = 1. Note that if we “complement” the error function by 2/Var
integral from x to e, we should get unity:

times the

2 * 2 ® 2 o,
—[ e du + ——J e " du = erf(x) + —J e “du
0 X

(1.59)
2 [ _,
= J' e du=1.
0
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Appendix 1.4

my

Vi
Vr

'\

V2 my

Il Figure 1.17

Vector diagram for center-of-mass conversion.

The virtue of this transformation is that the total momentum of the system p =
myv, + m,v, is also equal to the momentum of the center of mass, defined as Mv,,.
Because we assume that no external forces are acting on the system, ¥ = Ma_, =
(dp,,/dr) = 0, so that the momentum of the center of mass does not change dur-
ing the interaction between the two particles.

Note that since (m,/M) + (m,/M) = 1 we can write

ny my
Vo = Veom = | 57 +— V2 = Veom

M
(1.62)
m " m,
=—V,+—V, = Veom-
M 2 M 2 com
However,
mvy + vy, = Mvg,, (1.63)
so that
nllvl m?_Vz
M = vcom
Consequently,
m; m;
V2~ Veom EVZ - Hvl
(1.64)
m,
_ EV"
In a similar way, we find that
v =1 (1.65)

com — V1= Mvr‘

We now note an important point, that the velocities of the particles with respect to
the center of mass are just given by the two pieces of the vector v: u; = —(m,/M)v,,
and u, = (m,/M)v,, as shown in Figure 1.18. Note also that in the moving frame of
the center of mass, there is no net momentum for the particles; that is, mu; + myu, =
0. This important property enables us to calculate the velocity of one particle in the
center-of-mass frame given just the mass and the velocity of the other particle.
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Problems

problems

1.1

12

1.3

14

1.5

1.6

1.7

1.8

1.9

1.10

1.12

Molecules all of mass m and speed v exert a pressure p on the walls of a ves-
sel. If half the molecules are replaced by ones of another type all with mass
Im and speed 2v, will the pressure (a) increase, (b) decrease, (c) remain

constant?

Suppose the probability of obtaining a score between 0 and 100 on an exam
increases monotonically between 0 and 1.00. Is the average score on the
exam (a) greater than 50, (b) equal to 50, (c) less than 507

Suppose some property g of a gas is proportional to (0.326 s* m3)v? + (7
s® m~%)v?. What is the average value of ¢?

Without referring to any formula, decide whether at constant density the
mean free path (a) increases, (b) decreases, or (c) stays constant with
increasing temperature and explain your answer.

Consider a deck of cards. With aces valued at one and jacks, queens, and
kings valued at 11, 12, and 13, respectively, calculate the average value of
a card drawn at random from a full deck.

The distribution of the grades S (where 0 = § < 100) for a class contain-
ing a large number of students is given by the continuous function P(S) =
K(50 — IS — 501), where Ixl is the absolute value of x and X is a normaliza-
tion constant. Determine the normalization constant and find out what frac-
tion of the students received grades greater than or equal to 90.

A pair of dancers is waltzing on a one-dimensional dance floor of length L.
Since they tend to avoid the walls, the probability of finding them at a posi-
tion x between walls at x = 0 and x = L is proportional to sin’(7rx/L). What
is the normalized distribution function for the position of the waltzers?
Using this distribution function, calculate the most probable position for the
waltzers. Calculate the average position of the waltzers. (Hint: The integral
of y sin?y dy is [y%4] — [(y sin 2y)/4] — [(cos 2y)/8]; this is also the proba-
bility for finding a particle in a box at a particular position.)

By setting the derivative of the formula for the Maxwell-Boltzmann speed
distribution equal to zero, show that the speed at which the distribution has
its maximum is given by equation 1.33.

Show using equations 1.16 and 1.37 that the average molecular energy is
3kT72.

Prove equation 1.41 from equation 1.40. Integration can be accomplished
by making the following change of variable. Let € = kTx?, so that de =
kT d(x?) and € = (kT)"%x. Substitute these into equation 1.40 and inte-
grate by parts, recalling that since d(uv) = udv + v du, then [d(uw) =
fudv + [vdu, so that [udv = ()| — fvdu, where the notation
iimits indicates that the product (uv) should be evaluated at the limits used
for the integrals.

The Maxwell-Boltzmann distribution may not be quite valid! Calculate the
fraction of N, molecules having speeds in excess of the speed of light.

The object of this problem is to show more rigorously that <v,> =
(8kT/7 )2, where ., the reduced mass, is defined as p = m my/(m, + m,).
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Problems

1.18 In a group of molecules all traveling in the positive z direction, what is the

1.19

probability that a molecule will be found with a z-component speed between
400 and 401 /s if m/(2kT) = 5.62 X 107 s>/m*? (Hint: You need to find
and normalize a one-dimensional distribution function first!)

We will see in Chapter 3, equation 3.4, that the rate constant for a reaction as
a function of temperature is given by the average of o(€)v, over the thermal
energy distribution G(€,), where €, = ymv? and o(e,) is the energy-depend-
ent cross section for the reaction. The thermal relative kinetic energy distri-
bution G(e,) has the same functional form as the kinetic energy distribution
G(e) given in equation 1.37, except that all energies € = 3mv? are replaced
by relative kinetic energies €, = %/.wf

a. Suppose that for a parﬁcular reaction o(€,) = ce?, where c is a constant.
Calculate k(7).
b. Suppose that for another reaction o(e;) = cfe; calculate k(T).
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