Names and Symbols of Some of the More Familiar Elements

•	Aluminum	Al		Chlorine	Cl		Lithium	Li		Rubidium	Rb
_	Antimony	Sb		Chromium	Cr		Magnesium	Mg		Selenium	Se
	Argon	Ar		Cobalt	Co		Manganese	Mn		Silicon	Si
	Barium	Ba		Copper	Cu	•	Mercury	Hg		Silver	Ag
	Beryllium	Be	_	Fluorine	F		Neon	Ne		Sodium	Na
	Bismuth	Bi		Gold	Au		Nickel	Ni		Strontium	Sr
•	Boron	В	_	Helium	He		Nitrogen	N		Sulfur	S
_	Bromine	Br		Hydrogen	H	•	Oxygen	O	•	Tin	Sn
	Cadmium	Cd		Iodine	I		Phosphorus	P		Uranium	U
•	Calcium	Ca		Iron	Fe		Platinum	Pt		Xenon	Xe
•	Carbon	C	- -	Krypton	Kr		Plutonium	Pu		Zinc	Zn
_	Cesium	Cs	•	Lead	Pb		Potassium	K			

Names of Compounds

A compound can be identified either by its formula (e.g., NaCl) or its name (sodium chloride). In this section, you will learn the rules used to name ionic and simple molecular compounds. To start with, it will be helpful to show how individual ions within ionic compounds are named.

Ions

Monatomic cations take the name of the metal from which they are derived. Examples include

Na⁺ sodium K⁺ potassium

There is one complication: Certain metals, notably those in the transition series, form more than one type of cation. An example is iron, which forms both Fe^{2+} and Fe^{3+} . To distinguish between these cations, the charge must be indicated in the name. This is done by putting the charge as a Roman numeral in parentheses after the name of the metal:

(An older system used the suffixes -ic for the ion of higher charge and -ous for the ion of lower charge. These were added to the stem of the Latin name of the metal, so that the Fe³⁺ ion was referred to as ferric and the Fe²⁺ ion as ferrous.)

Monatomic anions are named by adding the suffix -ide to the stem of the name of the nonmetal from which they are derived.

			п	nyunue
N ³ nitride	O 2-	oxide	F	fluoride
	S2-	sulfide	C1	chloride
	Se ²⁻	selenide	Br ⁻	bromide
	Te ²⁻	telluride	I -	iodide

Polyatomic ions are given special names:

NH4+	ammonium		
OH	hydroxide		

NO ₃	nitrate			
C1O ₃	chlorate	C1O ₄	perchlorate	
CN	cyanide			
CH ₃ COO	acetate			
MnO_4	permanganate			
CO ₃ ²⁻	carbonate	HCO ₃ ²⁻	hydrogen carbonate	
PO ₄ ³⁻	phosphate	HPO ₄ ²⁻	hydrogen phosphate	H ₂ PO ₄ dihydrogen phosphate
SO_4^{2-}	sulfate			
CrO ₄ ² -	chromate	Cr ₂ O ₇ ² -	dichromate	

Certain nonmetals in Groups 15-17 of the periodic table form more than one polyatomic ion containing oxygen (oxoanions). The names of several such oxoanions are shown in below. From the entries in the table, you should be able to deduce the following rules.

- When a nonmetal forms two oxoanions, the suffix -ate is used for the anion with the larger number of oxygen atoms. The suffix -ite is used for the anion containing fewer oxygen atoms.
- When a nonmetal forms more than two oxoanions, the prefixes per- (largest number of oxygen atoms) and hypo- (fewest oxygen atoms) are used as well.

Oxoanions of Nitrogen, Sulfur and Chlorine

Nitrogen	Suffur	Chlorine
NO ₃ ⁻ nitrate NO ₂ ⁻ nitrite	SO ₄ ²⁻ sulfate SO ₃ ²⁻ sulfite	ClO ₄ perchlorate ClO ₃ chlorate ClO ₂ chlorite ClO hypochlorite

Ionic Compounds

The name of an ionic compound consists of two words. The first word names the cation and the second names the anion. This is, of course, the same order in which the ions appear in the formula.

Example: CaS calcium sulfide
Al(NO₃)₃ aluminum nitrate
FeCl₂ iron(II) chloride

Binary Molecular Compounds

When a metal combines with a nonmetal, the product is ordinarily an ionic compound. As you have just seen, the formulas and names of these compounds can be deduced in a straightforward way. When two nonmetals combine with each other, the product is most often a binary molecular compound. There is no simple way to deduce the formulas of such compounds. There is, however, a systematic way of naming molecular compounds that differs considerably from that used with ionic compounds.

The systematic name of a binary molecular compound, which contains two different nonmetals, consists of two words.

- The first word gives the name of the element that appears first in the formula; a Greek prefix (see below) is used to show the number of atoms of that element in the formula.
- 2. The second word consists of
- the appropriate Greek prefix designating the number of atoms of the second element
- the stem of the name of the second element
- the suffix -ide

To illustrate these rules, consider the names of the several oxides of nitrogen:

Example:

N₂O₅ dinitrogen pentaoxide

N₂O₄ dinitrogen tetraoxide

NO₂ nitrogen dioxide

N₂O₃ dinitrogen trioxide

NO nitrogen oxide

N₂O dinitrogen oxide

Greek Prefixes Used in Nomenclature

Number	Prefix	Number	Prefix	Number	Prefix
2	di	5	penta	. 8	octo
3	tri	6	hexa	9	nona
4	tetra	7	hepta	10	deca

Example:

SO₂ sulfur dioxide PCl₃ phosphorus trichloride

sulfur trioxide SO₃

Cl₂O₇ dichlorine heptaoxide

Many of the best-known binary compounds of the nonmetals have acquired common names. These are widely and, in some cases, exclusively used.

Example:

H₂O water

PH₃ phosphine

H₂O₂ hydrogen peroxide

AsH₃ arsine

NH₃ ammonia N₂H₄ hydrazine NO nitric oxide

 N_2O nitrous oxide CH_4

C2H2 acetylene

methane

Acids

A few binary molecular compounds containing H atoms ionize in water to form H⁺ ions. These are called acids. One such compound is hydrogen chloride, HCl; in water solution it exists as aqueous H⁺ and Cl⁻ ions. The water solution of hydrogen chloride is given a special name; it is referred to as hydrochloric acid. A similar situation applies with HBr and HI:

Pure Substance	Water Solution	
HCl(g) hydrogen chloride	H ⁺ (aq), Cl ⁻ (aq)	hydrochloric acid
HBr(g) hydrogen bromide	$H^+(aq), Br^-(aq)$	hydrobromic acid
HI(g) hydrogen odide	$H^+(aq), I^-(aq)$	hydriodic acid

Most acids contain oxygen in addition to hydrogen atoms. Such species are referred to as oxoacids. Two oxoacids that you are likely to encounter in the general chemistry laboratory are:

HNO₃ nitric acid

H2SO4 sulfuric acid

The names of oxoacids are simply related to those of the corresponding oxoanions. The -ate suffix of the anion is replaced by -ic in the acid. Similarly, the suffix -ite is replaced by the suffix -ous. The prefixes per- and hypo- found in the name of the anion are retained in the name of the acid.

Example:

ClO₄ perchlorate ion HCIO₄ perchloric acid ClO₃ chlorate ion HC1O₃ chloric acid CIO2 chlorite ion HClO₂ chlorous acid ClO hypochlorite ion **HClO** hypochlorous acid