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There is NO PHASE DIFFERENCE if the path differences are equal to
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Electromagnetic wave
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E — electric field strength
t—time
Z — position
< A — amplitude
E(t =0;z) = Acos2m— P
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) Distance
E (t=0; z) = A cos (2rt z/A)

imaginary axis
M (t=0; z) = A sin (27t z/\)

E (t=0; z) = A cos (27 z/\)

ﬁ
F=Acos(2n z/A) +i Asin(2w z/A\)
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Wave as a vector

imaginary axis

A - wave amplitude

, o, - wave phase angle
real axis
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A Figure 4.3. Multiplication of a vector C
in the Argand diagram by i simply means
rotating C 90° counterclockwise. There-

iC fore, i’C = —C.

i =+/—1

A cos o+ IA sin o

Acosa+iAsina = A explia]



Acosa—+iAsina = A explia]

Properties of Exponential Terms
We will not prove that A cos o + iA sin a = A exp[ia]. You must know, however,
the properties of exponential terms:

expla] exp[b] = expla + b]; :2: Eg = expla — b];
explk - a] = {exp[a]}k; exp[0] = 1;

expla] — +oc fora — +o00;

expla] — 0 fora — —o0.




X-rays scatter from electrons in all directions

Primary beam

Secondary beams



X-ray scattering from several electr /)

Y,
Primary beam .r er'

When do electrons scatter “in phase” so that waves add AV A VAVAVAY
constructively?
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X-rays scatter from electrons in all directions

Primary beam

Secondary beams



Dot product
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a.b=|al.lbl cos6

The Product of Two Vectors a and b
Let vectors a and b, with lengths |a| and |b|, be inclined at an angle 6.

Scalar product: Their scalar product is the number a - b = ab cos 6 and
a-b=D>b-a.



System of two electrons

Figure 4.4. A system of two
electrons: e; and e,. The path
difference between the
scattered waves 1 and 2

is p+gq.

So and s are wave vectors of magnitude 1/A

p=ANTr-S
gq=—\NT-S

minus sign is due to the fact that the projection of r on s has a direction opposite to s

p+g=N\T-(So—S).



Figure 4.4. A system of two
electrons: e; and e;,. The path
difference between the
scattered waves 1 and 2 So

isp+gq. -

The wave along electron e, is lagging behind in phase compared with the wave
along e;. With respect to wave 1, the phase of wave 2 is

2Tr-(Sg —S) - A
A

= 27r - S,
where

S=s—5g 4.1)



It is interesting to note that the wave can be regarded as being reflected against a
plane with 0 as the reflecting angle and | S| = 2(sin 6)/\ (Figure 4.5). The physical
meaning of vector S is the following: Because S = s — sg, with |s| = |sg| = 1/A,
S is perpendicular to the imaginary “reflecting plane,” which makes equal angles
with the incident and reflected beam.

Figure 4.5. The primary wave, repre-
sented by sp, can be regarded as being
reflected against a plane. 0 is the reflect-
ing angle. Vector S is perpendicular to this
plane.
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If we add the waves 1 and 2 in Figure 4.4, the Argand diagram shows two
vectors, 1 and 2, with equal length (amplitude) and a phase of 27rr - S for wave 2
with respect to wave 1 (Figure 4.6). Vector T represents the sum of the two waves.
In mathematical form: T=1 4 2=1 4 1 exp[2mir - S] if the length of the vectors
equals 1. So far we had the origin of this two-electron system in e.

Figure 4.6. The summation of
the two scattered waves in
Figure 4.4 with the origin in
electron e;.




Figure 4.7. The origin, or reference point, for the scattered waves of the two-electron system
is now located at O.

Suppose we
move the origin over —R from e; to point O (Figure 4.7). Then we obtain the
following: With respect to a wave 0, wave 1 has a phase of 2R - S, and wave 2
has a phase of 2m(r + R) - S (Figure 4.8)

T=1+2=exp[2miR - S] + exp[2mi(r + R) - S]
= exp[2miR - S]{1 4 exp[2mir - S]}

Conclusion: A shift of the origin by —R causes an increase of all phase angles by
2mR - S. The amplitude and intensity (which is proportional to the square of the
amplitude) of wave T do not change.



Figure 4.8. The summation of waves 1 and 2 with
the origin of the two-electron system in position O.

Suppose we
move the origin over —R from e; to point O (Figure 4.7). Then we obtain the
following: With respect to a wave 0, wave 1 has a phase of 2R - S, and wave 2
has a phase of 2m(r + R) - S (Figure 4.8)

T=1+2=exp[2miR - S] + exp[2mi(r + R) - S]
= exp[2miR - S]{1 4 exp[2mir - S]}

Conclusion: A shift of the origin by —R causes an increase of all phase angles by
2mR - S. The amplitude and intensity (which is proportional to the square of the
amplitude) of wave T do not change.



Scattering by an atom

Cp(r ) Figure 4.9. The electron cloud of an atom. p(r) is
B the electron density. Because of the centrosymme-

try, p(r) = p(—r).

P(-r)

f = [ pexpizmir-Siar. 42)



p(r)dv

Figure 4.10. The scattering factor f of an
atom is always real if we assume centrosym-
metry of the electron cloud. The imaginary
part of every scattering vector is compen-
sated by the imaginary part of a vector with

p(-r)dv equal length but a phase angle of opposite

2

sign.

p(r) {exp[2mir - S] + exp[—2mir - S]} dr

p(r) cos[2mr - S]dr.



Scattering by an atom depends on the length of |S]
(resolution) —3

Figure 4.11. The scattering factor f for a carbon atom as a function of 2(sin0)/\. f is
expressed as electron number, and for the beam with 6 =0, f = 6.




Scattering by a unit cell

Suppose a unit cell has n atoms at positions r; (j = 1,2, 3, ..., n) with respect
to the origin of the unit cell (Figure 4.12). With their own nuclei as origins, the
atoms diffract according to their atomic scattering factor f. If the origin is now
transferred to the origin of the unit cell, the phase angles change by 27rr; - S. With
respect to the new origin, the scattering is given by

fj = fj exp[2'rrirj . S],

Figure 4.12. A unitcell with three
atoms (1, 2, and 3) at positions ry,
| O and r;.




Figure 4.13. The structure factor
F(S) is the sum of the scattering by
the separate atoms in the unit cell.

unit cell 1s
F(S) =)  fj expl2mir; - S]. (4.3)
j=1

F(S) is called the structure factor because it depends on the arrangement (structure)
of the atoms in the unit cell (Figure 4.13).



Scattering by a crystal

Suppose that the crystal has translation vectors a, b, and ¢ and contains a large
number of unit cells: n; In the a direction, n, 1n the b direction, and n3 in the ¢

direction (Figure 4.14). / /
C
a
tatub+v.e 7 . scattering of this unit cell
- with O as origin is :
e F(S)exp[2it.a.S]exp[2iu.b.S]exp[2niv.c.S)
C
/
/
O a

expla] exp[b] = expla + b]

The scattering of this unit cell
with O as origin i1s F(S)

Figure 4.14. A crystal contains a large number of identical unit cells. Only two of them are
drawn in this figure.



To obtain the scattering by the crystal, we must add the
scattering by all unit cells with respect to a single origin. We choose the origin O
in Figure 4.14. For a unit cell with its own origin at position ¢t -a+u -b+ v - ¢,
in which ¢, u, and v are whole numbers, the scattering is

F(S) x exp[2mita - S] x exp[2miub - S] x exp[2mive - S].

The total wave K(S) scattered by the crystal is obtained by a summation over all
unit cells:

n, na ni
K(S) = F(S) x Zexp[2'm'ta - S] x Zexp[Zm’ub - S] % Zexp[Z'm'vc - S].
=0 =0 v=0



The total wave K(S) scattered by the crystal is obtained by a summation over all
unit cells:

n (%) ni
K(S) = F(S) x ) exp[2mita-S] x ) _exp[2miub-S] x Y _exp[2mive - S].
0

t=0 U= v=0

Because np, n,, and nj are very large, the summation ) ;' , exp[2ita - S] and the
other two over u and v are almost always equal to zero unless a - S is an integer
h,b - S is an integer k, and ¢ - S is an integer /. This is easy to understand if we
regard exp[2mita - S] as a vector in the Argand diagram with a length of 1 and a

phase angle 2mta - S (see Figure 4.15).

Figure 4.15. Each arrow repre-
sents the scattering by one unit
cell in the crystal. Because of the
huge number of unit cells and
because their scattering vectors
are pointing in different direc-
tions, the scattering by a crystal is,
in general, zero. However, in the
special case that a - S is an integer

h, all vectors point to the right and
the scattering by the crystal can be
of appreciable intensity.




t=6 t=1

t=7 <— . >t=0

t=8

Conclusion: A crystal does not scatter X-rays, unless

a-S=hn,
b-S =k, (4.4)
c-S=1.

These are known as the Laue conditions. &, k, and [ are whole numbers, either

positive, negative, or zero. The amplitude of the total scattered wave is proportional
to the amplitude of the structure factor F(S) and the number of unit cells in the
crystal.



Diffraction Conditions

In Section 4.3, we noted that vector S is perpendicular to a “reflecting” plane. With
a chosen origin for the system, r - S is the same for all points in the reflecting plane.
This is true because the projection of each r on S has the same length. Because
r - S determines the phase angle, the waves from all points in a reflecting plane
reflect in phase. Choose the origin of the system in the origin O of the unit cell.
The waves from a reflecting plane through the origin have phase angle O (r - S =
0). For a parallel plane with r - S = 1, they are shifted by 1 x 21r, and so forth.
All parallel planes with r - S equal to an integer are reflecting in phase and form a
series of Bragg planes.

"
Te
< ectipg
S f/a]]e,, S
S = s — sp, with |s| = |sg| = 1/\ So < 0

|S| = 2(sin 6)/A\




Bragg planes are identical to lattice planes

The plane with r - S = 1 cuts the a-axis at positionr = ¢.
Thus % + S = 1. But from the Laue conditions we know that ; - S = 1. Therefore,
& = h and in the same way the reflecting plane cuts the b-axis at b/k and the c-axis

at ¢/l. The result is that the reflecting planes are the lattice planes.

/
/7 reflecting planes

direction of S /
along this line /

The end points of the
vectors a/ h, b/k, and ¢/! form a lattice plane perpendicular to vector S (see the text). d is
the distance between these lattice planes.



The projection
of a/h on S has a length 1/|S]|, but this projection is also equal to the distance
d between the lattice planes (Figure 4.16).

/
/7 reflecting planes

direction of S /
along this line /

The end points of the
vectors a/ h, b/k, and ¢/ form a lattice plane perpendicular to vector S (see the text). d is
the distance between these lattice planes.

2d sin 0 .

1/|S| =d and |S| = 2(sin®)/A  => N




Q

lattice plane

2d sin 6

Figure 4.17. Two lattice planes are drawn separated by a distance d. The incident and the
reflected beams make an angle 6 with the lattice planes. Note that the beam is thus deflected
through an angle of 20 relative to its incident direction.

The incident and reflected beam make an equal angle with the plane (Figure 4.17).
In a series of parallel reflecting planes (Bragg planes), the phase difference between
the radiation from successive planes is 2. The diffraction of X-rays by lattice
planes can easily form the impression that only atoms on lattice planes contribute to
the reflection. This is completely wrong! All atoms in the unit cell contribute to each
reflection, atoms on lattice planes and in between. The advantage of lattice plane
reflection and Bragg’s law is that it offers a visual picture of the scattering process.



Reciprocal lattice and Ewald construction

There is a crystal lattice and a reciprocal lattice. The crystal lattice is real, but the
reciprocal lattice is an imaginary lattice.

Question: What is the advantage of the reciprocal lattice?
Answer: With the reciprocal lattice, the directions of scattering can easily be
constructed.



reciprocal
lattice

Figure 4.19. The Ewald sphere as a tool to construct the direction of the scattered beam.
The sphere has radius 1/A. The origin of the reciprocal lattice is at O. sy indicates the
direction of the incident beam; s indicates the direction of the scattered beam.



Expected end of lecture #2



