### E2011: Theoretical fundamentals of computer science Topic 3: Numeral systems

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### Outline



#### 2 Positional numeral systems: decimal system

3 Hexadecimal system

3 D ( 3 D )

## 

Figure: Numerals - from Wikipedia

### Introduction

Electronic computers/calculators:

- analogic computers
- digital computers
- hybrid computers

▶ ∢ ∃ ▶

### Introduction

Electronic computers/calculators:

- analogic computers
- digital computers
- hybrid computers



Figure: An analogic computer - oscilloscope

### Positional notation

Can be traced back to the work of Archimedes (3rd century BC). Only in 12th century, the decimal notation was introduced in Europe (Fibonacci).



### Positional notation

Can be traced back to the work of Archimedes (3rd century BC). Only in 12th century, the decimal notation was introduced in Europe (Fibonacci).



 $123456_{10} = 1 \times 10^5 + 2 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$ 

How do we extract the digits from a number (radix 10)?



### Representation



Sign: if present, whether it is a positive or negative integer MSD: most significant digit LSD: least significant digit

### Binary systems (Base-2)



・ 何 ト ・ ヨ ト ・ ヨ ト

$$1010011010_{2} =$$

$$= 1 \times 2^{9} + 0 \times 2^{8} + 1 \times 2^{7} + 0 \times 2^{6}$$

$$+ 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= 512 + 128 + 16 + 8 + 2$$

$$= 666_{10}$$

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣



< □ > < □ > < □ > < □ > < □ > < □ >

- digits (base-10)  $\longleftrightarrow$  bits (base-2)
- *kilobit* (*Kb*) =  $1000 = 10^3$  bits
- megabit (Mb) = 1000kb  $= 10^{6}$  bits
- giga, tera, peta, exa, zetta,...
- *kibibit* =  $1024 = 2^{10}$  bits
- $mebibit = 1024 Kibit = 2^{20} bits$

#### • 8 bits = 1 byte

- 1 KB = 1024 bytes =  $2^{10}$  bytes = 8192 bits  $\neq$  1 Kb
- 1 MB = 1024 KB =  $2^{20}$  bytes
- GB, PB, TB, EB...

From decimal to binary:  $42_{10} = ?_2$ 

 $42/2 \longrightarrow$  quotient: 21 remainder: 0  $21/2 \longrightarrow$  quotient: 10 remainder: 1  $10/2 \longrightarrow$  quotient: 5 remainder: 0  $5/2 \longrightarrow$  quotient: 2 remainder: 1  $2/2 \longrightarrow$  quotient: 1 remainder: 0  $1/2 \longrightarrow$  quotient: 0 remainder: 1

...and read from last to first remainder:

$$42_{10} = 101010_2$$

くぼう くほう くほう しほ

...or quicker (for small numbers):

$$\begin{array}{l} 42_{10} = 32 + 8 + 2 \\ = 2^5 + 2^3 + 2^1 \\ = 100000_2 + 1000_2 + 10_2 = \\ = 101010_2 \end{array}$$

æ

イロト イボト イヨト イヨト

 $00000_2 = 0_{10}$  $00001_2 = 1_{10}$  $00010_2 = 2_{10}$  $00011_2 = 3_{10}$  $00100_2 = 4_{10}$  $00101_2 = 5_{10}$  $00110_2 = 6_{10}$  $00111_2 = 7_{10}$ 

 $01000_2 = 8_{10}$  $01001_2 = 9_{10}$  $01010_2 = 10_{10}$  $01011_2 = 11_{10}$  $01100_2 = 12_{10}$  $01101_2 = 13_{10}$  $01110_2 = 14_{10}$  $01111_2 = 15_{10}$  $10000_2 = 16_{10}$ 

く 白 ト く ヨ ト く ヨ ト

3

### Important properties

• with *n* bits, maximum number representable is

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{n-1} = 2^{n} - 1$$

• it follows that data is represented with limited precision

4 3 4 3 4 3 4

### Bits, bytes, words...

- byte (8 bits) is the basic data unit
- 1 byte is used to represent basic characters (ASCII)
- 2 bytes are used for extended/international caracters (Unicode)
- 1 integer value may be represented on 2/4/8/16 bytes: defines the "word"-size for a given computer → depends on the *architecture*
- short- and long-words have half-/double- the size of the word
- there are also "doublewords", "quadwords"

### Examples ASCII

- American Standard Code for Information Interchange. Characters are represented on 8 bits (1 byte):

- 'A':  $65_{10} = 41_{16} = 0100\ 0001_2$ , 'B': 0100 0010<sub>2</sub>,...
- '0':  $48_{10} = 30_{16} = 0011 \ 0000_2,...$

etc

• Image: A image A image: A

### Examples



- if "Sign" is reserved, the range is  $-2^{31} 1$  to  $2^{31} 1$ , i.e. -2,147,483,647 to 2,147,483,647
- if "Sign" is not reserved, the range is 0 to  $2^{32} 1$ , i.e. 0 to 4,294,967,295

・ 同 ト ・ ヨ ト ・ ヨ ト

### Examples IEEE 754

- technical standard for floating point arithmetic



< 回 > < 回 > < 回 > <

### Additions in base-2

$$13 + 23 =?$$
carry:
$$1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$0 \quad 1 \quad 1 \quad 0 \quad 1$$

$$+ \quad 1 \quad 0 \quad 1 \quad 1 \quad 1$$

$$= \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0$$

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

2

イロト イヨト イヨト イヨト

Binary arithmetic and logical circuits

Example: single-bit adder:

| 0 + 0 = 0          | х | У | sum | carry |
|--------------------|---|---|-----|-------|
|                    | 0 | 0 | 0   | 0     |
| 0 + 1 = 1          | 0 | 1 | 1   | 0     |
| 1 + 0 = 1          | 1 | 0 | 1   | 0     |
| 1 + 1 = 0 carry: 1 | 1 | 1 | 0   | 1     |

1

▲ □ ▶ ▲ □ ▶ ▲ □ ▶



イロト イ部ト イヨト イヨト 二日

sum 
$$= x \oplus y$$
 (XOR)  
carry  $= x \cdot y$ 

Bitwise operations manipulate strings of bits:

- *bitwise-NOT*: for example, on 4 bits: NOT 7 = 8 (NOT {0111} = 1000)
- *bitwise-AND*: example: 1010&0111 = 0010
- bitwise-OR, bitwise-XOR, etc.
- test if a number is even/odd: check whether the least significant bit (index 0) is 0/1

• *logical shift*: insert 0s to the left (shift right) or to the right (shift left). Example (on 4 bits):

1011 << 1 = 0110 left shift with one position 1011 >> 1 = 0101 right shift with one position

- left shift with one position is equivalent to a multiplication by two
- right shift with one position is equivalent to a (integer) division by two

• *arithmetic shift*: insert 0s to the right (shift left) and duplicate the most significant bit at left (shift right). Example (on 4 bits):

1011 <<<< 1 = 0110 left shift with one position 1011 >>> 1 = 1101 right shift with one position

### Hexadecimal system (Base-16)

• need more symbols for hexa-digits: A, B,...,F

$$\begin{array}{l} 00000_2 = 0_{10} = 0_{16} \\ 00001_2 = 1_{10} = 1_{16} \\ 00010_2 = 2_{10} = 2_{16} \\ 00011_2 = 3_{10} = 3_{16} \\ 00100_2 = 4_{10} = 4_{16} \\ 00101_2 = 5_{10} = 5_{16} \\ 00110_2 = 6_{10} = 6_{16} \\ 00111_2 = 7_{10} = 7_{16} \end{array}$$

$$\begin{array}{l} 01000_2 = 8_{10} = 8_{16} \\ 01001_2 = 9_{10} = 9_{16} \\ 01010_2 = 10_{10} = A_{16} \\ 01011_2 = 11_{10} = B_{16} \\ 01100_2 = 12_{10} = C_{16} \\ 01101_2 = 13_{10} = D_{16} \\ 01110_2 = 14_{10} = E_{16} \\ 01111_2 = 15_{10} = F_{16} \\ 10000_2 = 16_{10} = 10_{16} \end{array}$$

<日<br />
<</p>

- 4 bits correspond to 1 hexa-digit
- most of the time, we use hexa notation as it is more compact
- in many cases, hexa strings/number are prefixed by 0x to make clear their meaning
- example: HTML color specification R,G,B: #AFA077:

 $R = 0xAF = 1010 \ 1111_2 = 10 \times 16 + 15 = 175$  $G = 0xA0 = 1010 \ 0000_2 = 160$  $B = 0x77 = 0111 \ 0111_2 = 119$ 

# Questions?

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

э

イロト イボト イヨト イヨト