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Outline

© Introduction

© A bit of computer architecture
@ Central processing unit
@ Memory
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Motivation

General Specifications

Platform:

Desktop

Product Family:

AMD Ryzen™ PRO Processors

Product Line:

AMD Ryzen™ Threadripper™ PRO 5000 WX-Series

AMD PRO Technologies:

Yes

Consumer Use:

No

Regional Availability:

Global, China, NA, EMEA, APJ, LATAM

Former Codename: “Chagall PRO"
Architecture: "Zen3"

#0f CPU Cores: 64

#0f Threads: 128

Max. Boost Clock: Up to 4.5GHz
Base Clock: 2.7GHz

L1 Cache: avB

L2 Cache: 32MB

L3 Cache: 256MB
Default TDP: 280W.

Processor Technology for CPU Cores:

TSMC 7nm FinFET

Unlocked for Overclocking®: Yes
CPU Socket: SWRX8.
Socket Count: P
Max. Operating Temperature (Tjmax): 5°C

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

3/37



An abstract view of a computer system
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Another view

Applications
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Eight great ideas in computer design

(from Patterson and Hennessy's “Computer Organization and Design")

@ design for Moore's Law
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Eight great ideas in computer design

(from Patterson and Hennessy's “Computer Organization and Design")
@ design for Moore's Law

use abstraction to simplify design

make the common case fast

performance via parallelism

performance via pipelining

performance via prediction

hierarchy of memories

©0 00000

dependability via redundancy
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Moore's law

The number of transistors in cost-effective integrated circuit double every
18-24 months.
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Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
Transistor count
50,000,000,000

Moore’s Law: The number of transistors on microchips doubles every two years
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Chip manufacturing process
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(from Patterson and Hennessy's “Computer
Organization and Design")
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Performance
@ what is the performance of a computer?
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Performance

what is the performance of a computer?
response time vs throughput
hardware vs software performance

energy per instruction

measuring performance
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(from Patterson and Hennessy's “Computer Organization and Design”)
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General architecture
In a very simplistic view,

Computer = Central Processing Unit + Memory

CPU CPU
A
\ 4
Data and _
Instructions Data Instructions
Memory Memory Memory
von Neumann Harvard
architecture architecture
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Central Processing Unit (CPU)

Control Unit

Arithmetic and Logic Unit (ALU)
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Central Processing Unit (CPU)

@ CPU executes instructions read from memory
@ instructions for loading and storing values

@ instructions that operate on values from registers, e.g. additions,
bitwise operations, math functions etc.

@ branching instructions

@ etc
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CPU

Registers: internal (to CPU) memory cells used

MEMORY

0x090 | 0

0x100 | 10

0x110| 110

0x120 | 0

INSTRUCTIONS

R1=100

R2=LOAD 0x100

R3=ADD R1,R2

STORE 0x110=R3
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Speed, clock, cycles

Intel® Core™ i9-13900K

@ internal clock: used to maintain
. . 3.00 GHz
synchronicity of th operations (et o™t o

@ the frequency of the clock (in

MHz, or GHz nowadays) gives 5 80 Gy
the speed of the CPU: one prioth il

operation may start on each tick

LT LT
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Instruction cycle

Main steps in executing an instruction

o fetch: read instruction from memory

@ decode: figure out what to do

@ execute: take values from register and execute instruction

@ store: save the result in a register

Fetch

—4 Decode

—+ Execute

—+ Store
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CPU: more details

{ Decode Instruction

Integer Register File

‘ ‘ Floating Point Register File

‘ SSE/MMX (etc)

P
AL Load
Store

register. fast internal
storage; small - several
bytes per register
register file: the set of

similar registers within
CPU

register are specialized:
storing integer, floating
point, instructions,
addresses etc

AGU: address generation
unit - handles data
access
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CPU: pipelines

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Fetch |=pt Decode (=t Execute = Store
Fetch |=pi Decode [=p+ Execute =+ Store
Fetch |[=pt Decode =P+ Execute f=¢ Store
Fetch |[=pt Decode =t Execute f= Store
Fetch |[=pt Decode =t Execute f=p Store
t t ts ta ts ts t
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CPU: CISC vs RISC

CISC: Complex Instruction Set RISC: Reduced Instruction Set

Computer Computer
@ the original ISA improvement on CISC

@ one instruction may take several
cycles

one clock-cycle per instruction

emphasis on software

@ emphasizes hardware over register-to-register

software LOAD/STORE
e complex instructions (e.g

memory-to-memory

LOAD/STORE)

@ shorter programs

uses many internal registers

@ low cycles per second

@ high cycles per second
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CPU: CISC vs RISC

Example: compute A x B. Assume A is stored at memory location 1200,
and B at 1201, respectively.

The following instruction(s) performs the multiplication and stores the
result at the first memory location.

CISC RISC

MUL 1200,1201 Load A, 1200
Load B, 1201
Mul A, B
Store 1200, A
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CPU: multilevel cache

@ cache: fast memory closer to CPU
@ improves data access speed by reducting emphmiss penalty

CPU

L1 cache
L2 cache
1
L3 cache
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Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of computel



Moving bits and bytes - data buses

@ a (computer) bus refers to
hardware and protocols for
transferring data

@ internal buses: data (memory)
bus, system bus, control bus, etc

@ external (expansion) buses:
connects devices to computer
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Parallelism

SMP: symmetric multiprocessor systems

Main
Memory

SMP - Symmetric Multiprocessor System

- ) =

Cache Cache Cache

o] |
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By Fermicuto fdn - A, o]
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Parallelism

SMP: symmetric multiprocessor systems

Advantages: Drawbacks:

@ increased throughput @ increased traffic over bus, longer

redundancy, hency reliability distances between two CPUs

@ risk of bottlenecks on shared

°
@ easy configuration.
o resources

more processes executing at
same time: MultiProcessing.

@ coordination becomes much
more complex
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Parallelism

Multicore

Processor 0 Pracessor 1

Core 0 Core 1 Care 2 Core 3

[(tcache | ticache | [(cache | ticache ]

L2 Cache L2 Cache

System Bus

l

Main memory

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 26 /37



Parallelism
Multicore - example OpenSPARC (Sun Microsystems)
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Parallelism

Multicore

Advantages:

@ run instructions in parallel on
different cores

@ usually use a single die, or onto
multiple dies but in single chip
package

@ more energy efficient: higher
performance at lower energy

@ less traffic, shorter distances
than SMP
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Drawbacks:
@ overhead in writing specific code

@ dual-core processor does not
work at 2x speed of single
processor, but 60% — 80% more
speed

@ some operating systems still not
exploit the multicore
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Memory organization

Computer = Central Processing Unit + Memory
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Wishes:
@ instantaneous access to any bit (0-latency)
@ infinite capacity
@ cheap (i.e. 09)
o infinite bandwidth
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Wishes:
@ instantaneous access to any bit (0-latency)
@ infinite capacity
@ cheap (i.e. 09)
@ infinite bandwidth
Reality:
@ larger memory is slower: more time to locate the desired position

e faster memory is more expensive (SRAM vs DRAM)

@ larger bandwidth is more expensive
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Memory technology

SRAM DRAM
e Static Random Access Memory @ Dynamic Random Access
@ per bit: 2 transistors for access, Memory
4 transistors for storage @ per bit: 1 capacitor, 1 access
o it keeps state as long as the transistor
power is on @ loses charge over time — needs

refresh cycles
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o level 0 (volatile): CPU registers:
data for instructions, etc

o level 1 (volatile): L1 cache:
SRAM, separate data and Managein >
instruction space, KBs/core

@ level 2 (volatile): L2/3 cache:
SRAM, normally within the Managed by
same chip as CPU, MBs/core e

@ level 3 (volatile): main memory:
usually DRAM; tens GBs (less
often hundreds GBs or 1TB); in
embedded devices could be ~_
SRAM (KBs-MBs in size) cparatng syt

o level 4 (permanent): disks, SSD
- TBs in size

registers

“Disk”
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Memory - other storage media

Floppy disks - now mostly extinct

8-inch 5.25-inch 3.50-inch
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Magnetic tapes - still relevant since 50s...
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Magnetic tapes - still relevant since 50s...
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Flash memory

@ non-volatile electronic memory
that can be electrically
reprogrammed

@ based on NAND or NOR gates

@ limited number of write/erase
cycles

@ data degradation over time
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Questions?
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