E2011: Theoretical fundamentals of computer science
Basic concepts about operating systems

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX



Outline
@ Operating systems

© Kernel

© Shell

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of computel

m]

=



Vlad Popovici, Ph.

(Fac. of Science -

E2011: Theoretical fundamentals of computel

DA




Operating systems

Why?
@ acts as an interface between user/applications and hardware
@ resource manager: manages |/O and peripherals
@ provide a virtual perspective on the underlying hardware
@ manage programs

Compiler Text Editor Assembler Database System

SYSTEM AND APPLICATION PROGRAMS

OPERATING SYSTEM

COMPUTER
HARDWARE

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 4/20



Main roles of the OS:
@ resource sharing:

» allocate resources for all
activities; separate the
resources between activities

> jsolation of activties

» communication between
processes/activities

@ virtualization

@ provide standard services:
process management, file
systems, network services, etc

Vlad Popovici, Ph.D. (Fac. of Science - REC

5/20



OS over time

@ early OS: set of routines for common procedures; single-user OS

@ multi-user OS: — batch processing — multi-tasking — virtual
machines

@ time-sharing OS: interactive use

e modern OS: usually a kernel+GUI; desktop-level (MacOS, Linux,
Windows, etc); smart appliances (Android, iOS, Symbian, etc);
server-level: GUI is optional (UNIX-based OSes, etc); etc

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 6/20



Batch OS

@ intially, a system in which
jobs are run sequentially

@ a job monitor supervises )
. Job 1
execution and manages the
-
job queue
@ modern OSes have their own
1 heduler llowing for
_]ObS.C edue.(s)ao g fo
non-interactive, eventually Job J
synchronized, execution of
jobs

u}
)
I
il
it

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of computel



Example of batch OS

IBM's
0S/360
Examples:
@ start a job: job name, accounting
@ developed in the 1960s information, params
o designed for mainframes //MYJOB JOB (ACCOUNT),’MY JOB
_ NAME’ ,CLASS=A ,MSGCLASS=X
@ goal was to maximize _ S
hardware utilization @ specify program to execute within job

. . //STEP1 EXEC PGM=MYPROGRAM
@ introduces job control

language (JCL) ° j‘;’;‘?;;;’;alE;;ZC“tion

PGM=ANOTHERPGM, COND=(0,LT,STEP1)

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 8/20



Multitasking

"concurrent” exectution of processes (tasks)
does not imply parallel execution

multiprogramming OSes: allow context switching between processes

cooperative multitasking: processes voluntarily ceed time to OS/other
process: ealry Windows and MacOS

e preemptive multitasking. OS decides to switch between executing
tasks

o real time systems

© multi-threaded systems

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 9/20



Example of multitasking OS

UNIX

@ developed in the 1970s
at Bell Labs

@ implements preemptive

- } Examples:
multitasking

) ) ] e work with files: 1s, cp, mv, rm
@ time-sharing: CPU time

dived among multiple

processes @ control access: chmod, chown

@ traverse filesystem hierarchy: cd, pwd

@ process management @ control processes: ps, kill

@ system calls for process
control: fork, exec,
kill, etc

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 10 /20



Another classification of modern OSes

© Desktop OSes: for personal computers, user-friendly, wide range of
applications; ex: Windows, macQOS, Linux

@ Mobile OSes: for touch interfaces and mobile devices; ex: Android,

iOS, HarmonyOS.

Server OSes: manage and optimize network resources, security, and

multi-user services; ex: Windows Server, Linux

Embedded OSes: for specific hardware and applications; ex:

FreeRTOS, Embedded Linux, VxWorks, QNX.

Real-Time OSes: when immediate response to inputs is critical; ex:

RTLinux, FreeRTOS, QNX, LynxOS.

Mainframe OSes: for high-volume processing; ex: IBM z/0S,

Unisys OS 2200, HP NonStop OS.

Distributed OSes: coordinates multiple computers ex: Apache

Hadoop (for data processing clusters), Google's Kubernetes OS (for

container management), Plan 9 from Bell Labs.

© Network OSes: used for managing networked computers; ex: Novell
NetWare, Cisco 10S, Windows Server with Active Directory.

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 11/20

© © 06 © o




OS Kernel

@ kernel: the core of the OS that provides services to all other
components of OS

o talks directly to hardware

@ usual start-up sequence: power-on — BIOS (Basic I/O System) —
kernel loaded into a protected memory space

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 12 /20



OS Kernel - main functions

@ loading and managing less-critical OS components, such as device
drivers

@ managing execution threads and various processes spawned by
running applications

scheduling applications
memory management

managing and optimizing hardware resources and dependencies

managing and accessing |/O devices (keyboards, mice, disk drives,
USB ports, network adapters and display,...)

@ handling device and application system calls using various
mechanisms such as hardware interrupts or device drivers

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 13 /20



CPU modes to support kernel:

@ kernel mode: code has unrestricted access to hardware; it is loaded in
protected memory space and operates with highest privileges

@ user mode: applications run with lower privileges; access to resources
is made via system calls to kernel

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 14 /20



Types of kernels:

@ microkernel. delegates user services and processes in different address
space; uses message-passing for communication; more flexibility and
security (e.g. QNX - UNIX-based, real-time)

e monolithic: implements services in the same address space (e.g. most
of UNIX-based kernels, Windows 9x)

@ hybrid: tries to combine both (e.g. Windows 10, 11)

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 15 /20



Monolithic Kernel Microkernel "Hybrid kernel"
based Operating System based Operating System based Operating System

System

Operating system

Figure: Comparison of three different kernel types (from Wikipedia)

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 16 / 20



Shells

@ a program that allows users and programs to interact with OS services

e two modes: command line interface (CLI) and graphical user interface
(GUI)

o CLI it has a specific language allowing the on line or scripted
interaction with OS

@ examples of CLI: Windows' Power Shell or UNIX's bash, tcsh, etc

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 17 /20



Shells

3 Acminstrton Windows Powershell

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute

urrent

\ 17 (flatpak)

4.1

Compact [6TK2/3]
Papirus [6TK2/3]

il

Intel 5-82500 (8) @ 3.400Hz

NVIDIA GeFor
Intel D oraphics 828
4439MB / 15954M1B

em =il

18/20



Questions?

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of computel



Explorations

@ go to https://copy.sh/v86/ and instantiate some machines with
Windows, DOS, and Linux and try to find your way around

@ alternatively, try https://www.pcjs.org/ for a more diverse
selection of OSes (and other older programs)

Vlad Popovici, Ph.D. (Fac. of Science - RECE2011: Theoretical fundamentals of compute 20/20


https://copy.sh/v86/
https://www.pcjs.org/

	Operating systems
	Kernel
	Shell

