E2011: Theoretical fundamentals of computer science Introduction to algorithms – part II

Vlad Popovici, Ph.D.

RECETOX

Outline

1 Review of pseudocode constructs

(B)

Pseudocode

- variables store some values (e.g. x, y); may refer to simple (e.g. scalar) values, or more complicated data structures (vectors, matrices, lists, etc.)
- *input* to specify the required values for the algorithm to compute the *output*
- variables are assigned values: x ← 50 or x ← y, but values are never assigned variables or other values: 50 ← x is a nonsense
- mathematical operators can be used as usual

A (1) < A (1) < A (1) </p>

```
Branching - conditional execution

if ⟨condition⟩ then

code for ⟨condition⟩ is True

[

else

code for ⟨condition⟩ is False

]

end if
```

- "else" branch is optional
- one can use "continue" to force quitting a loop or "next" to force jumping to the next iteration within a loop

• • = • • = •

Loops

Repeat as long as the condition is true:

while $\langle condition \rangle$ do instruction

end while

Repeat as long as the condition is false:

repeat

. . .

instruction

until (condition)

Repeat for all values in a series: for (*iterator*) do instructions end for for all (*iterator*) do instructions end for end for

<日

<</p>

э

Subroutines

Procedures

procedure (name)((params)) block end procedure

- may change the values of the parameters
- use **return** to cause immediate exit from the procedure

Functions

function $\langle name \rangle (\langle params \rangle)$ body return value end function

 does not change the values of the parameters

• • = • • = •

• returns a computed value

Vectors and arrays

- may contain \geq 0 elements
- \bullet all elements have the same type (e.g. $\mathbb{N},\mathbb{R})$
- \bullet each element is addressble by an index e.g. $i\in\mathbb{N}^*$ or $i,j\in\mathbb{N}^*$
- the indexing induces an order among the elements
- for the purpose of this introductory course, we stick to single element addressing

 $\mathbf{x} \in \mathbb{R}^n : [x_i]; \quad \mathbf{M} \in \mathcal{M}_{m \times n}(\mathbb{R}) : [m_{ij}]; \quad \mathbf{A} \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$

æ

Arrays - access patterns - examples

Access all $[x_i]$ sequentially: for i = 1, 2, ..., n do work with x_i

end for

Access all elements in odd-numbered columns: for $j = 2k + 1, k = 1, ..., \lfloor (n - 1)/2 \rfloor$ do for i = 1, ..., m do work with m_{ij}

end for end for

3

▲御▶ ▲ 国▶ ▲ 国▶ …

- bag of elements, usually of the same type
- no inherent ordering
- needs an element selection strategy to be specified
- you can use sets operations to make things clear(er)

• e.g.
$$A \subset \mathbb{Z}, |A| = n$$

• if asked to detail some operation (e.g. union), then you need to describe the algorithm, not only say " $A \cup B$ "

Problem 1

Find the minimum and maximum of a (a) vector, (b) matrix, and (c) set of real numbers.

A B A A B A

Solution 1(a)

Input: $x = [x_i] \in \mathbb{R}^n$ **Output:** $x_{min} = \min_i(x)$; $x_{max} = \max_i(x)$ \triangleright initial values $x_{min} \leftarrow x_1; x_{max} \leftarrow x_1$ for i = 2, ..., n do if $x_i > x_{max}$ then \triangleright a larger value was found $x_{max} \leftarrow x_i$ end if if $x_i < x_{min}$ then \triangleright a smaller value was found $X_{min} \leftarrow X_i$ end if end for

Solution 1(b)

Input: $X = [x_{ii}] \in \mathcal{M}_{m,n}(\mathbb{R})$ **Output:** $x_{min} = \min_{ij}(X)$; $x_{max} = \max_{ij}(X)$ ▷ initial values $x_{min} \leftarrow x_{11}; x_{max} \leftarrow x_{11}$ for i = 1, ..., m do for i = 1, ..., n do if $x_{ii} > x_{max}$ then ▷ a larger value was found $x_{max} \leftarrow x_{ii}$ end if if $x_{ii} < x_{min}$ then \triangleright a smaller value was found $x_{min} \leftarrow x_{ii}$ end if end for end for

3

・ 回 ト ・ ヨ ト ・ 日 ト …

Solution 1(c)

Input: $A \subset \mathbb{R}, A \neq \emptyset$ **Output:** $a_{min} = \min(A)$; $a_{max} = \max(A)$ ▷ initial values $a_{min} \leftarrow \infty; a_{max} \leftarrow -\infty$ while $A \neq \emptyset$ do $a \leftarrow \text{pick random element from } A$ if $a > a_{max}$ then \triangleright a larger value was found $a_{max} \leftarrow a$ end if if $a < a_{min}$ then \triangleright a smaller value was found $a_{min} \leftarrow a$ end if $A \leftarrow A \setminus \{a\}$ \triangleright remove the element from A end while

A (1) < A (2) < A (2) </p>

Problem 2

Given a vector of real numbers, sort its elements in increasing order.

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Solution 2 (Bubble sort)

Input: $x = [x_i] \in \mathbb{R}^n$ **Output:** sorted x repeat swapped \leftarrow False for i = 1, ..., n - 1 do if $x_i > x_{i+1}$ then $t \leftarrow x_i$ $x_i \leftarrow x_{i+1}$ $x_{i+1} \leftarrow t$ swapped $\leftarrow True$ end if end for until not swapped

 \triangleright need to swap x_i and x_{i+1}

A (1) < A (1) < A (1) </p>

э

Problem 3

Given a real-valued vector x, compute the (sample-based) estimates of the mean and standard deviation.

4 3 4 3 4 3 4

Solution 3 - first version

Use
$$\hat{\mu} = \frac{1}{n} \sum_{i} x_{i}; \quad \hat{\sigma}^{2} = \frac{1}{n-1} \sum_{i} (x_{i} - \hat{\mu})^{2}$$

Input: $x = [x_{i}] \in \mathbb{R}^{n}$
Output: m - the mean; σ - the standard deviation
 $m \leftarrow 0$
for $i = 1, ..., n$ do
 $m \leftarrow m + x_{i}$
end for
 $m \leftarrow \frac{m}{n}$
 $s \leftarrow 0$
for $i = 1, ..., n$ do
 $s \leftarrow s + (x_{i} - m)^{2}$
end for
 $\sigma \leftarrow \sqrt{\frac{s}{n-1}}$

æ

イロト イポト イヨト イヨト

Discussion

- why not use updates like $m \leftarrow m + \frac{x_i}{n}$?
- what happens if n = 1?
- what about underflow and precision of the result? how can we improve the robustness?
- can we make it faster e.g. by passing only once through data?

Solution 3 - second version

It can be show (prove it!) that

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (x_i - \mu)^2 = \frac{1}{n-1} \sum_i x_i^2 + \frac{1}{n(n-1)} \left(\sum_i x_i \right)^2$$

Input: $x = [x_i] \in \mathbb{R}^n$ Output: m - the mean; σ - the standard deviation $s_1 \leftarrow 0; s_2 \leftarrow 0$ for i = 1, ..., n do $s_1 \leftarrow s_1 + x_i$ $s_2 \leftarrow s_2 + x_i^2$ end for $m \leftarrow \frac{s_1}{n}$ $\sigma \leftarrow \sqrt{\frac{s_2}{n-1} + \frac{s_1^2}{n(n-1)}}$

A B A A B A

Questions?

э

イロト イポト イヨト イヨト