
2
2.1 Introduction

2.2 Boolean Equations

2.3 Boolean Algebra

2.4 From Logic to Gates

2.5 Multilevel Combinational
Logic

2.6 X’s and Z’s, Oh My

2.7 Karnaugh Maps

2.8 Combinational Building
Blocks

2.9 Timing

2.10 Summary

Exercises

Interview Questions

Combinational Logic Design

2 .1 INTRODUCTION
In digital electronics, a circuit is a network that processes discrete-
valued variables. A circuit can be viewed as a black box, shown in
Figure 2.1, with

� one or more discrete-valued input terminals

� one or more discrete-valued output terminals

� a functional specification describing the relationship between inputs
and outputs

� a timing specification describing the delay between inputs changing
and outputs responding.

Peering inside the black box, circuits are composed of nodes and ele-
ments. An element is itself a circuit with inputs, outputs, and a specifica-
tion. A node is a wire, whose voltage conveys a discrete-valued variable.
Nodes are classified as input, output, or internal. Inputs receive values
from the external world. Outputs deliver values to the external world.
Wires that are not inputs or outputs are called internal nodes. Figure 2.2

51

inputs outputs
functional spec

timing spec

Figure 2.1 Circuit as a black
box with inputs, outputs, and
specifications

Figure 2.2 Elements and nodes
A E1

E2

E3B

C

n1

Y

Z

illustrates a circuit with three elements, E1, E2, and E3, and six nodes.
Nodes A, B, and C are inputs. Y and Z are outputs. n1 is an internal
node between E1 and E3.

Digital circuits are classified as combinational or sequential. A com-
binational circuit’s outputs depend only on the current values of the
inputs; in other words, it combines the current input values to compute
the output. For example, a logic gate is a combinational circuit. A
sequential circuit’s outputs depend on both current and previous values
of the inputs; in other words, it depends on the input sequence. A combi-
national circuit is memoryless, but a sequential circuit has memory. This
chapter focuses on combinational circuits, and Chapter 3 examines
sequential circuits.

The functional specification of a combinational circuit expresses
the output values in terms of the current input values. The timing
specification of a combinational circuit consists of lower and upper
bounds on the delay from input to output. We will initially concentrate
on the functional specification, then return to the timing specification
later in this chapter.

Figure 2.3 shows a combinational circuit with two inputs and one
output. On the left of the figure are the inputs, A and B, and on the right
is the output, Y. The symbol CL inside the box indicates that it is imple-
mented using only combinational logic. In this example, the function, F,
is specified to be OR: Y � F(A, B) � A � B. In words, we say the
output, Y, is a function of the two inputs, A and B, namely Y � A OR B.

Figure 2.4 shows two possible implementations for the combina-
tional logic circuit in Figure 2.3. As we will see repeatedly throughout
the book, there are often many implementations for a single function.
You choose which to use given the building blocks at your disposal and
your design constraints. These constraints often include area, speed,
power, and design time.

Figure 2.5 shows a combinational circuit with multiple outputs. This
particular combinational circuit is called a full adder and we will revisit
it in Section 5.2.1. The two equations specify the function of the out-
puts, S and Cout, in terms of the inputs, A, B, and Cin.

To simplify drawings, we often use a single line with a slash through
it and a number next to it to indicate a bus, a bundle of multiple signals.
The number specifies how many signals are in the bus. For example,
Figure 2.6(a) represents a block of combinational logic with three inputs
and two outputs. If the number of bits is unimportant or obvious from
the context, the slash may be shown without a number. Figure 2.6(b)
indicates two blocks of combinational logic with an arbitrary number of
outputs from one block serving as inputs to the second block.

The rules of combinational composition tell us how we can build
a large combinational circuit from smaller combinational circuit

52 CHAPTER TWO Combinational Logic Design

Figure 2.3 Combinational logic
circuit

Figure 2.4 Two OR
implementations

A
B Y

Y = F(A, B) = A + B

CL

A
B

Y

(a)

Y

(b)

A
B

Figure 2.5 Multiple-output
combinational circuit

Figure 2.6 Slash notation for
multiple signals

A S

S = A ⊕ B ⊕ Cin
Cout = AB + ACin + BCin

B
Cin

CL Cout

CL3

(a)

CL CL

(b)

2

elements. A circuit is combinational if it consists of interconnected
circuit elements such that

� Every circuit element is itself combinational.

� Every node of the circuit is either designated as an input to the
circuit or connects to exactly one output terminal of a circuit
element.

� The circuit contains no cyclic paths: every path through the circuit
visits each circuit node at most once.

Example 2.1 COMBINATIONAL CIRCUITS

Which of the circuits in Figure 2.7 are combinational circuits according to the
rules of combinational composition?

Solution: Circuit (a) is combinational. It is constructed from two combinational
circuit elements (inverters I1 and I2). It has three nodes: n1, n2, and n3. n1 is an
input to the circuit and to I1; n2 is an internal node, which is the output of I1
and the input to I2; n3 is the output of the circuit and of I2. (b) is not combina-
tional, because there is a cyclic path: the output of the XOR feeds back to one of
its inputs. Hence, a cyclic path starting at n4 passes through the XOR to n5,
which returns to n4. (c) is combinational. (d) is not combinational, because node
n6 connects to the output terminals of both I3 and I4. (e) is combinational,
illustrating two combinational circuits connected to form a larger combinational
circuit. (f) does not obey the rules of combinational composition because it has a
cyclic path through the two elements. Depending on the functions of the
elements, it may or may not be a combinational circuit.

Large circuits such as microprocessors can be very complicated, so
we use the principles from Chapter 1 to manage the complexity. Viewing
a circuit as a black box with a well-defined interface and function is an

2.1 Introduction 53

The rules of combinational
composition are sufficient but
not strictly necessary. Certain
circuits that disobey these
rules are still combinational,
so long as the outputs depend
only on the current values of
the inputs. However, deter-
mining whether oddball cir-
cuits are combinational is
more difficult, so we will usu-
ally restrict ourselves to com-
binational composition as a
way to build combinational
circuits.

Figure 2.7 Example circuits
(a)

n1 n2 n3I1 I2

(c)

CL
CL

(e)

n4
n5

(b)

n6
I3

I4

(d)

CL
CL

(f)

application of abstraction and modularity. Building the circuit out of
smaller circuit elements is an application of hierarchy. The rules of
combinational composition are an application of discipline.

The functional specification of a combinational circuit is usually
expressed as a truth table or a Boolean equation. In the next sections, we
describe how to derive a Boolean equation from any truth table and how
to use Boolean algebra and Karnaugh maps to simplify equations. We
show how to implement these equations using logic gates and how to
analyze the speed of these circuits.

2 . 2 BOOLEAN EQUATIONS
Boolean equations deal with variables that are either TRUE or FALSE,
so they are perfect for describing digital logic. This section defines some
terminology commonly used in Boolean equations, then shows how to
write a Boolean equation for any logic function given its truth table.

2 . 2 .1 Terminology

The complement of a variable, A, is its inverse, . The variable or its
complement is called a literal. For example, A, , B, and are literals.
We call A the true form of the variable and the complementary form;
“true form” does not mean that A is TRUE, but merely that A does not
have a line over it.

The AND of one or more literals is called a product or an implicant.
, , and B are all implicants for a function of three variables.

A minterm is a product involving all of the inputs to the function.
is a minterm for a function of the three variables A, B, and C, but is
not, because it does not involve C. Similarly, the OR of one or more
literals is called a sum. A maxterm is a sum involving all of the inputs
to the function. is a maxterm for a function of the three
variables A, B, and C.

The order of operations is important when interpreting Boolean
equations. Does Y � A � BC mean Y � (A OR B) AND C or Y � A
OR (B AND C)? In Boolean equations, NOT has the highest precedence,
followed by AND, then OR. Just as in ordinary equations, products are
performed before sums. Therefore, the equation is read as Y � A OR
(B AND C). Equation 2.1 gives another example of order of operations.

(2.1)

2 . 2 . 2 Sum-of-Products Form

A truth table of N inputs contains 2N rows, one for each possible value
of the inputs. Each row in a truth table is associated with a minterm

AB � BCD � ((A)B) � (BC(D))

A � B � C

AB
AB C

AB CAB

A
BA

A

54 CHAPTER TWO Combinational Logic Design

that is TRUE for that row. Figure 2.8 shows a truth table of two
inputs, A and B. Each row shows its corresponding minterm. For exam-
ple, the minterm for the first row is because is TRUE when
A � 0, B � 0.

We can write a Boolean equation for any truth table by summing
each of the minterms for which the output, Y, is TRUE. For example,
in Figure 2.8, there is only one row (or minterm) for which the
output Y is TRUE, shown circled in blue. Thus, . Figure 2.9
shows a truth table with more than one row in which the output is
TRUE. Taking the sum of each of the circled minterms gives

.
This is called the sum-of-products canonical form of a function

because it is the sum (OR) of products (ANDs forming minterms).
Although there are many ways to write the same function, such as

, we will sort the minterms in the same order that they
appear in the truth table, so that we always write the same Boolean
expression for the same truth table.

Example 2.2 SUM-OF-PRODUCTS FORM

Ben Bitdiddle is having a picnic. He won’t enjoy it if it rains or if there are ants.
Design a circuit that will output TRUE only if Ben enjoys the picnic.

Solution: First define the inputs and outputs. The inputs are A and R, which
indicate if there are ants and if it rains. A is TRUE when there are ants and
FALSE when there are no ants. Likewise, R is TRUE when it rains and FALSE
when the sun smiles on Ben. The output is E, Ben’s enjoyment of the picnic. E is
TRUE if Ben enjoys the picnic and FALSE if he suffers. Figure 2.10 shows the
truth table for Ben’s picnic experience.

Using sum-of-products form, we write the equation as: . We can build the
equation using two inverters and a two-input AND gate, shown in Figure 2.11(a).
You may recognize this truth table as the NOR function from Section 1.5.5: E � A
NOR . Figure 2.11(b) shows the NOR implementation. In
Section 2.3, we show that the two equations, and , are equivalent.

The sum-of-products form provides a Boolean equation for any truth
table with any number of variables. Figure 2.12 shows a random three-
input truth table. The sum-of-products form of the logic function is

(2.2)

Unfortunately, sum-of-products form does not necessarily generate
the simplest equation. In Section 2.3 we show how to write the same
function using fewer terms.

Y � A B C � AB C � ABC

A � RA R
R � A � R

E � A R

Y � BA � BA

Y � AB � AB

Y � AB

A BA B

2.2 Boolean Equations 55

Figure 2.8 Truth table and
minterms

Figure 2.9 Truth table with
multiple TRUE minterms

0

A B Y
0 0
0 1
1 0
1 1

0
1
0

minterm

A B
A B
A B

A B

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B
A B
A B

A B

Canonical form is just a fancy
word for standard form. You
can use the term to impress
your friends and scare your
enemies.

2 . 2 . 3 Product-of-Sums Form

An alternative way of expressing Boolean functions is the product-of-
sums canonical form. Each row of a truth table corresponds to a max-
term that is FALSE for that row. For example, the maxterm for the
first row of a two-input truth table is (A � B) because (A � B) is
FALSE when A � 0, B � 0. We can write a Boolean equation for any
circuit directly from the truth table as the AND of each of the max-
terms for which the output is FALSE.

Example 2.3 PRODUCT-OF-SUMS FORM

Write an equation in product-of-sums form for the truth table in Figure 2.13.

Solution: The truth table has two rows in which the output is FALSE. Hence, the
function can be written in product-of-sums form as . The
first maxterm, (A � B), guarantees that Y � 0 for A � 0, B � 0, because any
value AND 0 is 0. Likewise, the second maxterm, , guarantees that Y � 0
for A � 1, B � 0. Figure 2.13 is the same truth table as Figure 2.9, showing that
the same function can be written in more than one way.

Similarly, a Boolean equation for Ben’s picnic from Figure 2.10
can be written in product-of-sums form by circling the three rows of
0’s to obtain . This is uglier than the sum-
of-products equation, , but the two equations are logically
equivalent.

Sum-of-products produces the shortest equations when the output is
TRUE on only a few rows of a truth table; product-of-sums is simpler
when the output is FALSE on only a few rows of a truth table.

2 . 3 BOOLEAN ALGEBRA
In the previous section, we learned how to write a Boolean expression
given a truth table. However, that expression does not necessarily lead to
the simplest set of logic gates. Just as you use algebra to simplify mathe-
matical equations, you can use Boolean algebra to simplify Boolean
equations. The rules of Boolean algebra are much like those of ordinary
algebra but are in some cases simpler, because variables have only two
possible values: 0 or 1.

Boolean algebra is based on a set of axioms that we assume are cor-
rect. Axioms are unprovable in the sense that a definition cannot be
proved. From these axioms, we prove all the theorems of Boolean alge-
bra. These theorems have great practical significance, because they teach
us how to simplify logic to produce smaller and less costly circuits.

E � A R
E � (A � R)(A � R)(A � R)

(A � B)

Y � (A � B)(A � B)

56 CHAPTER TWO Combinational Logic Design

Figure 2.13 Truth table with
multiple FALSE maxterms

A + B

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

maxterm

A + B
A + B
A + B

Figure 2.12 Random three-input
truth table

B C Y
0 0
0 1
1 0
1 1

1
0
0
0

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0

Figure 2.11 Ben’s circuit

A

R

E

(a)

A
R

E

(b)

Figure 2.10 Ben’s truth table

A R E
0 0
0 1
1 0
1 1

1
0
0
0

Axioms and theorems of Boolean algebra obey the principle of dual-
ity. If the symbols 0 and 1 and the operators • (AND) and � (OR) are
interchanged, the statement will still be correct. We use the prime (�)
symbol to denote the dual of a statement.

2 . 3 .1 Axioms

Table 2.1 states the axioms of Boolean algebra. These five axioms and
their duals define Boolean variables and the meanings of NOT, AND,
and OR. Axiom A1 states that a Boolean variable B is 0 if it is not 1.
The axiom’s dual, A1�, states that the variable is 1 if it is not 0. Together,
A1 and A1� tell us that we are working in a Boolean or binary field of
0’s and 1’s. Axioms A2 and A2� define the NOT operation. Axioms A3
to A5 define AND; their duals, A3� to A5� define OR.

2 . 3 . 2 Theorems of One Variable

Theorems T1 to T5 in Table 2.2 describe how to simplify equations
involving one variable.

The identity theorem, T1, states that for any Boolean variable B, B
AND 1 � B. Its dual states that B OR 0 � B. In hardware, as shown in
Figure 2.14, T1 means that if one input of a two-input AND gate is
always 1, we can remove the AND gate and replace it with a wire con-
nected to the variable input (B). Likewise, T1� means that if one input of
a two-input OR gate is always 0, we can replace the OR gate with a wire
connected to B. In general, gates cost money, power, and delay, so
replacing a gate with a wire is beneficial.

The null element theorem, T2, says that B AND 0 is always equal
to 0. Therefore, 0 is called the null element for the AND operation,
because it nullifies the effect of any other input. The dual states that B
OR 1 is always equal to 1. Hence, 1 is the null element for the OR
operation. In hardware, as shown in Figure 2.15, if one input of an
AND gate is 0, we can replace the AND gate with a wire that is tied

2.3 Boolean Algebra 57

Axiom Dual Name

A1 B � 0 if B � 1 A1� B � 1 if B � 0 Binary field

A2 A2� NOT

A3 0 • 0 � 0 A3� 1 � 1 � 1 AND/OR

A4 1 • 1 � 1 A4� 0 � 0 � 0 AND/OR

A5 0 • 1 � 1 • 0 � 0 A5� 1 � 0 � 0 � 1 � 1 AND/OR

1 � 00 � 1

Table 2.1 Axioms of Boolean algebra

The null element theorem
leads to some outlandish state-
ments that are actually true! It
is particularly dangerous when
left in the hands of advertisers:
YOU WILL GET A MILLION
DOLLARS or we’ll send you a
toothbrush in the mail. (You’ll
most likely be receiving a
toothbrush in the mail.)

Figure 2.14 Identity theorem in
hardware: (a) T1, (b) T1�

1 =

(a)

B B

=0
B

B

(b)

LOW (to 0). Likewise, if one input of an OR gate is 1, we can replace
the OR gate with a wire that is tied HIGH (to 1).

Idempotency, T3, says that a variable AND itself is equal to just
itself. Likewise, a variable OR itself is equal to itself. The theorem gets
its name from the Latin roots: idem (same) and potent (power). The
operations return the same thing you put into them. Figure 2.16 shows
that idempotency again permits replacing a gate with a wire.

Involution, T4, is a fancy way of saying that complementing a vari-
able twice results in the original variable. In digital electronics, two
wrongs make a right. Two inverters in series logically cancel each other
out and are logically equivalent to a wire, as shown in Figure 2.17. The
dual of T4 is itself.

The complement theorem, T5 (Figure 2.18), states that a variable
AND its complement is 0 (because one of them has to be 0). And, by dua-
lity, a variable OR its complement is 1 (because one of them has to be 1).

2 . 3 . 3 Theorems of Several Variables

Theorems T6 to T12 in Table 2.3 describe how to simplify equations
involving more than one Boolean variable.

Commutativity and associativity, T6 and T7, work the same as in
traditional algebra. By commutativity, the order of inputs for an AND or
OR function does not affect the value of the output. By associativity, the
specific groupings of inputs do not affect the value of the output.

The distributivity theorem, T8, is the same as in traditional algebra,
but its dual, T8�, is not. By T8, AND distributes over OR, and by T8�, OR
distributes over AND. In traditional algebra, multiplication distributes
over addition but addition does not distribute over multiplication, so that
(B � C) � (B � D) � B � (C � D).

The covering, combining, and consensus theorems, T9 to T11, per-
mit us to eliminate redundant variables. With some thought, you should
be able to convince yourself that these theorems are correct.

58 CHAPTER TWO Combinational Logic Design

Theorem Dual Name

T1 B • 1 � B T1� B � 0 � B Identity

T2 B • 0 � 0 T2� B � 1 � 1 Null Element

T3 B • B � B T3� B � B � B Idempotency

T4 B
=

� B Involution

T5 T5� ComplementsB � B � 1B • B � 0

Table 2.2 Boolean theorems of one variable

Figure 2.16 Idempotency
theorem in hardware: (a) T3,
(b) T3�

B =

(a)

B B

=B
B B

(b)

Figure 2.17 Involution theorem
in hardware: T4

Figure 2.18 Complement
theorem in hardware: (a) T5,
(b) T5�

= BB

B
=

(a)

B
0

=
B

B
1

(b)

Figure 2.15 Null element
theorem in hardware: (a) T2,
(b) T2�

0 =

(a)

B 0

=1
B 1

(b)

De Morgan’s Theorem, T12, is a particularly powerful tool in digital
design. The theorem explains that the complement of the product of all
the terms is equal to the sum of the complement of each term. Likewise,
the complement of the sum of all the terms is equal to the product of the
complement of each term.

According to De Morgan’s theorem, a NAND gate is equivalent to
an OR gate with inverted inputs. Similarly, a NOR gate is equivalent to
an AND gate with inverted inputs. Figure 2.19 shows these De Morgan
equivalent gates for NAND and NOR gates. The two symbols shown for
each function are called duals. They are logically equivalent and can be
used interchangeably.

2.3 Boolean Algebra 59

Theorem Dual Name

T6 B • C � C • B T6� B � C � C � B Commutativity

T7 (B • C) • D � B • (C • D) T7� (B � C) � D � B � (C � D) Associativity

T8 (B • C) � (B • D) � B • (C � D) T8� (B � C) • (B � D) � B � (C • D) Distributivity

T9 B • (B � C) � B T9� B � (B • C) � B Covering

T10 T10� Combining

T11 T11� Consensus

T12 T12� De Morgan’s
Theorem� (B0 • B1 • B2)� (B0 � B1 � B2 ...)

B0 � B1 � B2...B0 • B1 • B2...

� (B � C) • (B � D)� B • C � B • D

(B � C) • (B � D) • (C � D)(B • C) � (B • D) � (C • D)

(B � C) • (B � C) � B(B • C) � (B • C) � B

Table 2.3 Boolean theorems of several variables

Augustus De Morgan, died 1871.
A British mathematician, born
in India. Blind in one eye. His
father died when he was 10.
Attended Trinity College,
Cambridge, at age 16, and
was appointed Professor of
Mathematics at the newly
founded London University at
age 22. Wrote widely on many
mathematical subjects, includ-
ing logic, algebra, and para-
doxes. De Morgan’s crater on
the moon is named for him.
He proposed a riddle for the
year of his birth: “I was x
years of age in the year x2.”

Figure 2.19 De Morgan equivalent gates

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

NAND
A
B Y

A
B Y

NOR
A
B Y

A
B Y

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

Y = A + B = A BY = AB = A + B

The inversion circle is called a bubble. Intuitively, you can imagine that
“pushing” a bubble through the gate causes it to come out at the other side
and flips the body of the gate from AND to OR or vice versa. For example,
the NAND gate in Figure 2.19 consists of an AND body with a bubble on
the output. Pushing the bubble to the left results in an OR body with
bubbles on the inputs. The underlying rules for bubble pushing are

� Pushing bubbles backward (from the output) or forward (from the
inputs) changes the body of the gate from AND to OR or vice versa.

� Pushing a bubble from the output back to the inputs puts bubbles
on all gate inputs.

� Pushing bubbles on all gate inputs forward toward the output puts a
bubble on the output.

Section 2.5.2 uses bubble pushing to help analyze circuits.

Example 2.4 DERIVE THE PRODUCT-OF-SUMS FORM

Figure 2.20 shows the truth table for a Boolean function, Y, and its complement,
. Using De Morgan’s Theorem, derive the product-of-sums canonical form of Y

from the sum-of-products form of .

Solution: Figure 2.21 shows the minterms (circled) contained in . The sum-of-
products canonical form of is

(2.3)

Taking the complement of both sides and applying De Morgan’s Theorem twice,
we get:

(2.4)

2.3.4 The Truth Behind It All

The curious reader might wonder how to prove that a theorem is true. In
Boolean algebra, proofs of theorems with a finite number of variables
are easy: just show that the theorem holds for all possible values of these
variables. This method is called perfect induction and can be done with a
truth table.

Example 2.5 PROVING THE CONSENSUS THEOREM

Prove the consensus theorem, T11, from Table 2.3.

Solution: Check both sides of the equation for all eight combinations of B, C,
and D. The truth table in Figure 2.22 illustrates these combinations. Because

for all cases, the theorem is proved.BC � BD � CD � BC � BD

Y � Y � A B � AB � (A B)(AB) � (A � B)(A � B)

Y � A B � AB

Y
Y

Y
Y

60 CHAPTER TWO Combinational Logic Design

FIGURE 2.20 Truth table
showing Y and Y–

Figure 2.21 Truth table showing
minterms for Y–

A B Y
0 0
0 1
1 0
1 1

0
0
1
1

Y
1
1
0
0

A B Y
0 0
0 1
1 0
1 1

0
0
1
1

Y
1
1
0
0

minterm

A B
A B
A B

A B

2 . 3 . 5 Simplifying Equations

The theorems of Boolean algebra help us simplify Boolean equations.
For example, consider the sum-of-products expression from the truth
table of Figure 2.9: . By Theorem T10, the equation sim-
plifies to . This may have been obvious looking at the truth table.
In general, multiple steps may be necessary to simplify more complex
equations.

The basic principle of simplifying sum-of-products equations is to
combine terms using the relationship , where P may be
any implicant. How far can an equation be simplified? We define an
equation in sum-of-products form to be minimized if it uses the fewest
possible implicants. If there are several equations with the same number
of implicants, the minimal one is the one with the fewest literals.

An implicant is called a prime implicant if it cannot be combined
with any other implicants to form a new implicant with fewer literals.
The implicants in a minimal equation must all be prime implicants.
Otherwise, they could be combined to reduce the number of literals.

Example 2.6 EQUATION MINIMIZATION

Minimize Equation 2.2: .

Solution: We start with the original equation and apply Boolean theorems step
by step, as shown in Table 2.4.

Have we simplified the equation completely at this point? Let’s take a closer
look. From the original equation, the minterms and differ only in the
variable A. So we combined the minterms to form . However, if we look at
the original equation, we note that the last two minterms and also
differ by a single literal (C and). Thus, using the same method, we could have
combined these two minterms to form the minterm . We say that implicants

and share the minterm .

So, are we stuck with simplifying only one of the minterm pairs, or can we simplify
both? Using the idempotency theorem, we can duplicate terms as many times as we
want: B � B � B � B � B … . Using this principle, we simplify the equation com-
pletely to its two prime implicants, , as shown in Table 2.5.B C � AB

AB CABB C
AB

C
ABCAB C

B C
AB CA B C

A B C � AB C � AB C

PA � PA � P

Y � B
Y � A B � AB

2.3 Boolean Algebra 61

Figure 2.22 Truth table proving
T11

0 0
0 1
1 0
1 1

B C D
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

BC + BD BC + BD + CD
0
1
0
1
0
0
1
1

0
1
0
1
0
0
1
1

Although it is a bit counterintuitive, expanding an implicant (for
example, turning AB into) is sometimes useful in minimiz-
ing equations. By doing this, you can repeat one of the expanded
minterms to be combined (shared) with another minterm.

You may have noticed that completely simplifying a Boolean equa-
tion with the theorems of Boolean algebra can take some trial and error.
Section 2.7 describes a methodical technique called Karnaugh maps that
makes the process easier.

Why bother simplifying a Boolean equation if it remains logically
equivalent? Simplifying reduces the number of gates used to physically
implement the function, thus making it smaller, cheaper, and possibly
faster. The next section describes how to implement Boolean equations
with logic gates.

2 . 4 FROM LOGIC TO GATES
A schematic is a diagram of a digital circuit showing the elements and
the wires that connect them together. For example, the schematic in
Figure 2.23 shows a possible hardware implementation of our favorite
logic function, Equation 2.2:

Y � A B C � AB C � ABC.

ABC � ABC

62 CHAPTER TWO Combinational Logic Design

Step Equation Justification

1 T3: Idempotency

2 T8: Distributivity

3 T5: Complements

4 T1: IdentityB C � AB

B C(1) � AB(1)

B C(A � A) � AB(C � C)

A B C � AB C � AB C � ABC

A B C � AB C � AB C

Table 2.5 Improved equation minimization

Step Equation Justification

1 T8: Distributivity

2 T5: Complements

3 T1: IdentityB C � ABC

B C (1) � ABC

B C (A � A) � ABC

A B C � AB C � AB C

Table 2.4 Equation minimization

By drawing schematics in a consistent fashion, we make them easier
to read and debug. We will generally obey the following guidelines:

� Inputs are on the left (or top) side of a schematic.

� Outputs are on the right (or bottom) side of a schematic.

� Whenever possible, gates should flow from left to right.

� Straight wires are better to use than wires with multiple corners
(jagged wires waste mental effort following the wire rather than
thinking of what the circuit does).

� Wires always connect at a T junction.

� A dot where wires cross indicates a connection between the wires.

� Wires crossing without a dot make no connection.

The last three guidelines are illustrated in Figure 2.24.
Any Boolean equation in sum-of-products form can be drawn as a

schematic in a systematic way similar to Figure 2.23. First, draw
columns for the inputs. Place inverters in adjacent columns to provide
the complementary inputs if necessary. Draw rows of AND gates for
each of the minterms. Then, for each output, draw an OR gate
connected to the minterms related to that output. This style is called
a programmable logic array (PLA) because the inverters, AND gates,
and OR gates are arrayed in a systematic fashion. PLAs will be
discussed further in Section 5.6.

Figure 2.25 shows an implementation of the simplified equation we
found using Boolean algebra in Example 2.6. Notice that the simplified
circuit has significantly less hardware than that of Figure 2.23. It may
also be faster, because it uses gates with fewer inputs.

We can reduce the number of gates even further (albeit by a single
inverter) by taking advantage of inverting gates. Observe that is anB C

2.4 From Logic to Gates 63

Figure 2.23 Schematic of
Y �A–B–C– � AB–C– �AB–C

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

Figure 2.24 Wire connections

wires connect
at a T junction

wires connect
at a dot

wires crossing
without a dot do

not connect

A B C

Y

Figure 2.25 Schematic of
Y �B–C– �AB–

1 Black light, twinkies, and beer.

AND with inverted inputs. Figure 2.26 shows a schematic using this
optimization to eliminate the inverter on C. Recall that by De Morgan’s
theorem the AND with inverted inputs is equivalent to a NOR gate.
Depending on the implementation technology, it may be cheaper to use
the fewest gates or to use certain types of gates in preference to others.
For example, NANDs and NORs are preferred over ANDs and ORs in
CMOS implementations.

Many circuits have multiple outputs, each of which computes a sep-
arate Boolean function of the inputs. We can write a separate truth table
for each output, but it is often convenient to write all of the outputs on a
single truth table and sketch one schematic with all of the outputs.

Example 2.7 MULTIPLE-OUTPUT CIRCUITS

The dean, the department chair, the teaching assistant, and the dorm social
chair each use the auditorium from time to time. Unfortunately, they occasion-
ally conflict, leading to disasters such as the one that occurred when the dean’s
fundraising meeting with crusty trustees happened at the same time as the
dorm’s BTB1 party. Alyssa P. Hacker has been called in to design a room reser-
vation system.

The system has four inputs, A3, . . . , A0, and four outputs, Y3, . . . , Y0. These
signals can also be written as A3:0 and Y3:0. Each user asserts her input when she
requests the auditorium for the next day. The system asserts at most one output,
granting the auditorium to the highest priority user. The dean, who is paying for
the system, demands highest priority (3). The department chair, teaching assis-
tant, and dorm social chair have decreasing priority.

Write a truth table and Boolean equations for the system. Sketch a circuit that
performs this function.

Solution: This function is called a four-input priority circuit. Its symbol and truth
table are shown in Figure 2.27.

We could write each output in sum-of-products form and reduce the equations
using Boolean algebra. However, the simplified equations are clear by inspec-
tion from the functional description (and the truth table): Y3 is TRUE when-
ever A3 is asserted, so Y3 � A3. Y2 is TRUE if A2 is asserted and A3 is not
asserted, so . Y1 is TRUE if A1 is asserted and neither of the higher
priority inputs is asserted: . And Y0 is TRUE whenever A0 and
no other input is asserted: . The schematic is shown in Figure
2.28. An experienced designer can often implement a logic circuit by inspec-
tion. Given a clear specification, simply turn the words into equations and the
equations into gates.

Y0 � A3A2A1 A0

Y1 � A3A2 A1

Y2 � A3A2

64 CHAPTER TWO Combinational Logic Design

Y

A CB

Figure 2.26 Schematic using
fewer gates

Notice that if A3 is asserted in the priority circuit, the outputs don’t
care what the other inputs are. We use the symbol X to describe inputs
that the output doesn’t care about. Figure 2.29 shows that the four-input
priority circuit truth table becomes much smaller with don’t cares. From
this truth table, we can easily read the Boolean equations in sum-of-
products form by ignoring inputs with X’s. Don’t cares can also appear
in truth table outputs, as we will see in Section 2.7.3.

2 . 5 MULTILEVEL COMBINATIONAL LOGIC
Logic in sum-of-products form is called two-level logic because it con-
sists of literals connected to a level of AND gates connected to a level of

2.5 Multilevel Combinational Logic 65

A0

A1

Priority
Circuit

A2

A3

0 0
0 1
1 0
1 1

0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
0

Y0

Y1

Y2

Y3

0 0
0 0
0 0
0 0

0 0 0 1 0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

0
0
0
1

1
1
1
0

0
0
0
0

0
0
0
0

1 0 0 0
1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1 0 0 0
1 0 0 0

A1 A0A3 A2 Y2 Y1 Y0Y3

Figure 2.27 Priority circuit

Figure 2.28 Priority circuit
schematic

A3A2A1A0
Y3

Y2

Y1

Y0

Figure 2.29 Priority circuit truth table
with don’t cares (X’s)

A1 A0

0 0
0 1
1 X
X X

0
0
0
0

0
0
0
1

0
0
1
0

0
1
0
0

A3 A2

0 0
0 0
0 0
0 1

X X 1 0 0 01 X

Y1 Y0Y3 Y2

X is an overloaded symbol
that means “don’t care” in
truth tables and “contention”
in logic simulation (see
Section 2.6.1). Think about
the context so you don’t mix
up the meanings. Some
authors use D or ? instead
for “don’t care” to avoid
this ambiguity.

OR gates. Designers often build circuits with more than two levels of
logic gates. These multilevel combinational circuits may use less hard-
ware than their two-level counterparts. Bubble pushing is especially
helpful in analyzing and designing multilevel circuits.

2 . 5 .1 Hardware Reduction

Some logic functions require an enormous amount of hardware when
built using two-level logic. A notable example is the XOR function of
multiple variables. For example consider building a three-input XOR
using the two-level techniques we have studied so far.

Recall that an N-input XOR produces a TRUE output when an odd
number of inputs are TRUE. Figure 2.30 shows the truth table for a
three-input XOR with the rows circled that produce TRUE outputs.
From the truth table, we read off a Boolean equation in sum-of-products
form in Equation 2.5. Unfortunately, there is no way to simplify this
equation into fewer implicants.

(2.5)

On the other hand, A � B � C � (A � B) � C (prove this to your-
self by perfect induction if you are in doubt). Therefore, the three-input
XOR can be built out of a cascade of two-input XORs, as shown in
Figure 2.31.

Similarly, an eight-input XOR would require 128 eight-input AND
gates and one 128-input OR gate for a two-level sum-of-products imple-
mentation. A much better option is to use a tree of two-input XOR
gates, as shown in Figure 2.32.

Y � ABC � ABC � ABC � ABC

66 CHAPTER TWO Combinational Logic Design

Figure 2.30 Three-input XOR:
(a) functional specification
and (b) two-level logic
implementation

B C
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
1
1
0
1
0
0
1

Y

XOR3

Y = A ⊕ B ⊕ C

A
B Y
C

BA C

Y
(b)(a)

Selecting the best multilevel implementation of a specific logic func-
tion is not a simple process. Moreover, “best” has many meanings: fewest
gates, fastest, shortest design time, least cost, least power consumption. In
Chapter 5, you will see that the “best” circuit in one technology is not
necessarily the best in another. For example, we have been using ANDs
and ORs, but in CMOS, NANDs and NORs are more efficient. With
some experience, you will find that you can create a good multilevel
design by inspection for most circuits. You will develop some of this
experience as you study circuit examples through the rest of this book. As
you are learning, explore various design options and think about the
trade-offs. Computer-aided design (CAD) tools are also available to
search a vast space of possible multilevel designs and seek the one that
best fits your constraints given the available building blocks.

2 . 5 . 2 Bubble Pushing

You may recall from Section 1.7.6 that CMOS circuits prefer NANDs
and NORs over ANDs and ORs. But reading the equation by inspection
from a multilevel circuit with NANDs and NORs can get pretty hairy.
Figure 2.33 shows a multilevel circuit whose function is not immedi-
ately clear by inspection. Bubble pushing is a helpful way to redraw
these circuits so that the bubbles cancel out and the function can be
more easily determined. Building on the principles from Section 2.3.3,
the guidelines for bubble pushing are as follows:

� Begin at the output of the circuit and work toward the inputs.

� Push any bubbles on the final output back toward the inputs so that
you can read an equation in terms of the output (for example, Y)
instead of the complement of the output .

� Working backward, draw each gate in a form so that bubbles cancel.
If the current gate has an input bubble, draw the preceding gate with
an output bubble. If the current gate does not have an input bubble,
draw the preceding gate without an output bubble.

Figure 2.34 shows how to redraw Figure 2.33 according to the
bubble pushing guidelines. Starting at the output, Y, the NAND gate
has a bubble on the output that we wish to eliminate. We push the
output bubble back to form an OR with inverted inputs, shown in

(Y)

2.5 Multilevel Combinational Logic 67

Figure 2.31 Three-input XOR
using two two-input XORs

A
B

YC

Figure 2.32 Eight-input XOR
using seven two-input XORs

Figure 2.33 Multilevel circuit
using NANDs and NORs

A
B

C

D

Y

Figure 2.34(a). Working to the left, the rightmost gate has an input
bubble that cancels with the output bubble of the middle NAND gate,
so no change is necessary, as shown in Figure 2.34(b). The middle gate
has no input bubble, so we transform the leftmost gate to have no
output bubble, as shown in Figure 2.34(c). Now all of the bubbles in
the circuit cancel except at the inputs, so the function can be read by
inspection in terms of ANDs and ORs of true or complementary
inputs: .

For emphasis of this last point, Figure 2.35 shows a circuit logi-
cally equivalent to the one in Figure 2.34. The functions of internal
nodes are labeled in blue. Because bubbles in series cancel, we
can ignore the bubble on the output of the middle gate and the input
of the rightmost gate to produce the logically equivalent circuit of
Figure 2.35.

Y � A BC � D

68 CHAPTER TWO Combinational Logic Design

A
B

C Y

D
(a)

no output
bubble

bubble on
input and outputA

B

C

D

Y

(b)

A
B

C

D

Y

(c)
Y = ABC + D

no bubble on
input and output

Figure 2.34 Bubble-pushed
circuit

Figure 2.35 Logically equivalent
bubble-pushed circuit

A
B

C

D

Y

AB

ABC

Y = ABC + D

Example 2.8 BUBBLE PUSHING FOR CMOS LOGIC

Most designers think in terms of AND and OR gates, but suppose you would
like to implement the circuit in Figure 2.36 in CMOS logic, which favors
NAND and NOR gates. Use bubble pushing to convert the circuit to NANDs,
NORs, and inverters.

Solution: A brute force solution is to just replace each AND gate with a NAND
and an inverter, and each OR gate with a NOR and an inverter, as shown in
Figure 2.37. This requires eight gates. Notice that the inverter is drawn with the
bubble on the front rather than back, to emphasize how the bubble can cancel
with the preceding inverting gate.

For a better solution, observe that bubbles can be added to the output of a gate
and the input of the next gate without changing the function, as shown in Figure
2.38(a). The final AND is converted to a NAND and an inverter, as shown in
Figure 2.38(b). This solution requires only five gates.

2 . 6 X’S AND Z’S, OH MY
Boolean algebra is limited to 0’s and 1’s. However, real circuits can also
have illegal and floating values, represented symbolically by X and Z.

2 . 6 .1 Illegal Value: X

The symbol X indicates that the circuit node has an unknown or illegal
value. This commonly happens if it is being driven to both 0 and 1 at the
same time. Figure 2.39 shows a case where node Y is driven both HIGH
and LOW. This situation, called contention, is considered to be an error

2.6 X’s and Z’s, Oh My 69

Figure 2.36 Circuit using ANDs
and ORs

Figure 2.37 Poor circuit using
NANDs and NORs

(a) (b)

Figure 2.38 Better circuit using
NANDs and NORs

Figure 2.39 Circuit with
contention

A = 1

Y = X

B = 0

and must be avoided. The actual voltage on a node with contention may
be somewhere between 0 and VDD, depending on the relative strengths
of the gates driving HIGH and LOW. It is often, but not always, in the
forbidden zone. Contention also can cause large amounts of power to
flow between the fighting gates, resulting in the circuit getting hot and
possibly damaged.

X values are also sometimes used by circuit simulators to indicate
an uninitialized value. For example, if you forget to specify the
value of an input, the simulator may assume it is an X to warn you of
the problem.

As mentioned in Section 2.4, digital designers also use the symbol
X to indicate “don’t care” values in truth tables. Be sure not to mix up
the two meanings. When X appears in a truth table, it indicates that
the value of the variable in the truth table is unimportant. When
X appears in a circuit, it means that the circuit node has an unknown
or illegal value.

2 . 6 . 2 Floating Value: Z

The symbol Z indicates that a node is being driven neither HIGH nor
LOW. The node is said to be floating, high impedance, or high Z. A typical
misconception is that a floating or undriven node is the same as a logic 0.
In reality, a floating node might be 0, might be 1, or might be at some volt-
age in between, depending on the history of the system. A floating node
does not always mean there is an error in the circuit, so long as some other
circuit element does drive the node to a valid logic level when the value of
the node is relevant to circuit operation.

One common way to produce a floating node is to forget to
connect a voltage to a circuit input, or to assume that an unconnected
input is the same as an input with the value of 0. This mistake may
cause the circuit to behave erratically as the floating input randomly
changes from 0 to 1. Indeed, touching the circuit may be enough to
trigger the change by means of static electricity from the body. We have
seen circuits that operate correctly only as long as the student keeps a
finger pressed on a chip.

The tristate buffer, shown in Figure 2.40, has three possible out-
put states: HIGH (1), LOW (0), and floating (Z). The tristate buffer
has an input, A, an output, Y, and an enable, E. When the enable is
TRUE, the tristate buffer acts as a simple buffer, transferring the input
value to the output. When the enable is FALSE, the output is allowed
to float (Z).

The tristate buffer in Figure 2.40 has an active high enable. That is,
when the enable is HIGH (1), the buffer is enabled. Figure 2.41 shows a
tristate buffer with an active low enable. When the enable is LOW (0),

70 CHAPTER TWO Combinational Logic Design

Figure 2.40 Tristate buffer

Figure 2.41 Tristate buffer with
active low enable

E A Y
0 0 Z
0 1 Z
1 0 0
1 1 1

A

E

Y

E A Y
0 0 0
0 1 1
1 0 Z
1 1 Z

A

E

Y

the buffer is enabled. We show that the signal is active low by putting a
bubble on its input wire. We often indicate an active low input by draw-
ing a bar over its name, , or appending the word “bar” after its name,
Ebar.

Tristate buffers are commonly used on busses that connect multi-
ple chips. For example, a microprocessor, a video controller, and an
Ethernet controller might all need to communicate with the memory
system in a personal computer. Each chip can connect to a shared
memory bus using tristate buffers, as shown in Figure 2.42. Only one
chip at a time is allowed to assert its enable signal to drive a
value onto the bus. The other chips must produce floating outputs
so that they do not cause contention with the chip talking to the
memory. Any chip can read the information from the shared bus at
any time. Such tristate busses were once common. However, in mod-
ern computers, higher speeds are possible with point-to-point links, in
which chips are connected to each other directly rather than over
a shared bus.

2 .7 KARNAUGH MAPS
After working through several minimizations of Boolean equations using
Boolean algebra, you will realize that, if you’re not careful, you some-
times end up with a completely different equation instead of a simplified
equation. Karnaugh maps (K-maps) are a graphical method for simplify-
ing Boolean equations. They were invented in 1953 by Maurice
Karnaugh, a telecommunications engineer at Bell Labs. K-maps work
well for problems with up to four variables. More important, they give
insight into manipulating Boolean equations.

E

2.7 Karnaugh Maps 71

Figure 2.42 Tristate bus
connecting multiple chips

en1

to bus

from bus

en2

to bus

from bus

en3

to bus

from bus

en4

to bus

from bus

Processor

Video

Ethernet
shared bus

Memory

Maurice Karnaugh, 1924–.
Graduated with a bachelor’s
degree in physics from the
City College of New York in
1948 and earned a Ph.D. in
physics from Yale in 1952.
Worked at Bell Labs and IBM
from 1952 to 1993 and as a
computer science professor at
the Polytechnic University of
New York from 1980 to 1999.

Recall that logic minimization involves combining terms. Two terms
containing an implicant, P, and the true and complementary forms of
some variable, A, are combined to eliminate A: .
Karnaugh maps make these combinable terms easy to see by putting
them next to each other in a grid.

Figure 2.43 shows the truth table and K-map for a three-input
function. The top row of the K-map gives the four possible values
for the A and B inputs. The left column gives the two possible
values for the C input. Each square in the K-map corresponds to a
row in the truth table and contains the value of the output, Y, for that
row. For example, the top left square corresponds to the first row in
the truth table and indicates that the output value Y � 1 when ABC �
000. Just like each row in a truth table, each square in a K-map
represents a single minterm. For the purpose of explanation,
Figure 2.43(c) shows the minterm corresponding to each square in
the K-map.

Each square, or minterm, differs from an adjacent square by a
change in a single variable. This means that adjacent squares share
all the same literals except one, which appears in true form in one
square and in complementary form in the other. For example,
the squares representing the minterms and are adjacent
and differ only in the variable C. You may have noticed that the
A and B combinations in the top row are in a peculiar order: 00, 01,
11, 10. This order is called a Gray code. It differs from ordinary
binary order (00, 01, 10, 11) in that adjacent entries differ only in
a single variable. For example, 01 : 11 only changes A from 0 to 1,
while 01 : 10 would change A from 1 to 0 and B from 0 to 1.
Hence, writing the combinations in binary order would not have
produced our desired property of adjacent squares differing only in
one variable.

The K-map also “wraps around.” The squares on the far right are
effectively adjacent to the squares on the far left, in that they differ only
in one variable, A. In other words, you could take the map and roll it
into a cylinder, then join the ends of the cylinder to form a torus (i.e., a
donut), and still guarantee that adjacent squares would differ only in one
variable.

2 .7.1 Circular Thinking

In the K-map in Figure 2.43, only two minterms are present in the
equation, and , as indicated by the 1’s in the left column.
Reading the minterms from the K-map is exactly equivalent to reading
equations in sum-of-products form directly from the truth table.

A BCA B C

A BCA B C

PA � PA � P

72 CHAPTER TWO Combinational Logic Design

Gray codes were patented
(U.S. Patent 2,632,058) by
Frank Gray, a Bell Labs
researcher, in 1953. They are
especially useful in mechani-
cal encoders because a slight
misalignment causes an error
in only one bit.

Gray codes generalize to
any number of bits. For
example, a 3-bit Gray code
sequence is:

000, 001, 011, 010,
110, 111, 101, 100

Lewis Carroll posed a related
puzzle in Vanity Fair in 1879.

“The rules of the Puzzle are
simple enough. Two words
are proposed, of the same
length; and the puzzle
consists of linking these
together by interposing
other words, each of which
shall differ from the next
word in one letter only. That
is to say, one letter may be
changed in one of the given
words, then one letter in the
word so obtained, and so
on, till we arrive at the
other given word.”

For example, SHIP to DOCK:

SHIP, SLIP, SLOP,
SLOT, SOOT, LOOT,
LOOK, LOCK, DOCK.

Can you find a shorter
sequence?

As before, we can use Boolean algebra to minimize equations in sum-of-
products form.

(2.6)

K-maps help us do this simplification graphically by circling 1’s in
adjacent squares, as shown in Figure 2.44. For each circle, we write the
corresponding implicant. Remember from Section 2.2 that an implicant is
the product of one or more literals. Variables whose true and complemen-
tary forms are both in the circle are excluded from the implicant. In this
case, the variable C has both its true form (1) and its complementary form
(0) in the circle, so we do not include it in the implicant. In other words, Y
is TRUE when A � B � 0, independent of C. So the implicant is . This
K-map gives the same answer we reached using Boolean algebra.

2 .7. 2 Logic Minimization with K-Maps

K-maps provide an easy visual way to minimize logic. Simply circle all
the rectangular blocks of 1’s in the map, using the fewest possible
number of circles. Each circle should be as large as possible. Then read
off the implicants that were circled.

More formally, recall that a Boolean equation is minimized when it
is written as a sum of the fewest number of prime implicants. Each circle
on the K-map represents an implicant. The largest possible circles are
prime implicants.

A B

Y � A B C � A BC � A B(C � C) � A B

2.7 Karnaugh Maps 73

Figure 2.43 Three-input function: (a) truth table, (b) K-map, (c) K-map showing minterms

B C
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0
0
0
0
0

Y

(a)

C 00 01

0

1

Y

11 10
AB

1

1

0

0

0

0

0

0

(b)

C 00 01

0

1

Y

11 10
AB

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

(c)

C 00 01

0

1

Y

11 10
AB

1

0

0

0

0

0

0

1 Figure 2.44 K-map minimization

For example, in the K-map of Figure 2.44, and are
implicants, but not prime implicants. Only is a prime implicant in
that K-map. Rules for finding a minimized equation from a K-map are
as follows:

� Use the fewest circles necessary to cover all the 1’s.

� All the squares in each circle must contain 1’s.

� Each circle must span a rectangular block that is a power of 2
(i.e., 1, 2, or 4) squares in each direction.

� Each circle should be as large as possible.

� A circle may wrap around the edges of the K-map.

� A 1 in a K-map may be circled multiple times if doing so allows
fewer circles to be used.

Example 2.9 MINIMIZATION OF A THREE-VARIABLE FUNCTION
USING A K-MAP

Suppose we have the function Y � F(A, B, C) with the K-map shown in
Figure 2.45. Minimize the equation using the K-map.

Solution: Circle the 1’s in the K-map using as few circles as possible, as shown in
Figure 2.46. Each circle in the K-map represents a prime implicant, and the dimen-
sion of each circle is a power of two (2 � 1 and 2 � 2). We form the prime impli-
cant for each circle by writing those variables that appear in the circle only in true or
only in complementary form.

For example, in the 2 � 1 circle, the true and complementary forms of B are
included in the circle, so we do not include B in the prime implicant. However, only
the true form of A(A) and complementary form of C are in this circle, so we
include these variables in the prime implicant . Similarly, the 2 � 2 circle covers
all squares where B � 0, so the prime implicant is .

Notice how the top-right square (minterm) is covered twice to make the prime
implicant circles as large as possible. As we saw with Boolean algebra
techniques, this is equivalent to sharing a minterm to reduce the size of the

B
AC

(C)

A B
A BCA B C

74 CHAPTER TWO Combinational Logic Design

Figure 2.45 K-map for
Example 2.9

00 01

Y

11 10
AB

1

1

0

0

1

0

1

1

0

1

C

implicant. Also notice how the circle covering four squares wraps around
the sides of the K-map.

Example 2.10 SEVEN-SEGMENT DISPLAY DECODER

A seven-segment display decoder takes a 4-bit data input, D3:0, and produces
seven outputs to control light-emitting diodes to display a digit from 0 to 9. The
seven outputs are often called segments a through g, or Sa–Sg, as defined in
Figure 2.47. The digits are shown in Figure 2.48. Write a truth table for the out-
puts, and use K-maps to find Boolean equations for outputs Sa and Sb. Assume
that illegal input values (10–15) produce a blank readout.

Solution: The truth table is given in Table 2.6. For example, an input of 0000
should turn on all segments except Sg.

Each of the seven outputs is an independent function of four variables. The
K-maps for outputs Sa and Sb are shown in Figure 2.49. Remember that adjacent
squares may differ in only a single variable, so we label the rows and columns in
Gray code order: 00, 01, 11, 10. Be careful to also remember this ordering when
entering the output values into the squares.

Next, circle the prime implicants. Use the fewest number of circles necessary to
cover all the 1’s. A circle can wrap around the edges (vertical and horizontal),
and a 1 may be circled more than once. Figure 2.50 shows the prime implicants
and the simplified Boolean equations.

Note that the minimal set of prime implicants is not unique. For example, the
0000 entry in the Sa K-map was circled along with the 1000 entry to produce
the minterm. The circle could have included the 0010 entry instead,
producing a minterm, as shown with dashed lines in Figure 2.51.

Figure 2.52 illustrates (see page 78) a common error in which a nonprime impli-
cant was chosen to cover the 1 in the upper left corner. This minterm,

, gives a sum-of-products equation that is not minimal. The minterm
could have been combined with either of the adjacent ones to form a larger cir-
cle, as was done in the previous two figures.

D3D2D1D0

D3D2D0

D2D1D0

2.7 Karnaugh Maps 75

Figure 2.46 Solution for
Example 2.9

Figure 2.47 Seven-segment
display decoder icon

00 01

Y

11 10
AB

1

1

0

0

1

0

1

1

0

1

C

AC

Y = AC + B
B

4 7

7-segment
display
decoder

a

b

c

d

g

e

f

D S

76 CHAPTER TWO Combinational Logic Design

Figure 2.49 Karnaugh maps for
Sa and Sb

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

0

11

10

D3:2
00

00

10 01 11

1

1

1

0

0

0

1

101

1

1

1

0

0

0

0

0

11

10

00

00

10D1:0

D3:2
D1:0

Sa Sb

D3:0 Sa Sb Sc Sd Se Sf Sg

0000 1 1 1 1 1 1 0

0001 0 1 1 0 0 0 0

0010 1 1 0 1 1 0 1

0011 1 1 1 1 0 0 1

0100 0 1 1 0 0 1 1

0101 1 0 1 1 0 1 1

0110 1 0 1 1 1 1 1

0111 1 1 1 0 0 0 0

1000 1 1 1 1 1 1 1

1001 1 1 1 0 0 1 1

others 0 0 0 0 0 0 0

Table 2.6 Seven-segment display decoder truth table

Figure 2.48 Seven-segment
display digits

0 1 2 3 4 5 6 7 8 9

2 .7. 3 Don’t Cares

Recall that “don’t care” entries for truth table inputs were introduced
in Section 2.4 to reduce the number of rows in the table when some
variables do not affect the output. They are indicated by the symbol X,
which means that the entry can be either 0 or 1.

Don’t cares also appear in truth table outputs where the output
value is unimportant or the corresponding input combination can never
happen. Such outputs can be treated as either 0’s or 1’s at the designer’s
discretion.

2.7 Karnaugh Maps 77

Figure 2.50 K-map solution for Example 2.10

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

0

11

10

00

00

10
D3:2

D1:0

Sa = D3D1 + D3D2D0 + D3D2D1 + D2D1D0

D3D1

D3D2D0

D2D1D0

Sa

D3D2D1

01 11

1

1

1

0

0

0

1

101

1

1

1

0

0

0

0

0

11

10

00

00

10
D3:2

D1:0

Sb = D3D2 + D2D1 + D3D1D0 + D3D1D0

D3D2

D2D1

Sb

D3D1D0

D3D1D0

Figure 2.51 Alternative K-map
for Sa showing different set of
prime implicants

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

0

11

10

00

00

10
D3:2

D1:0

Sa = D3D1 + D3D2D0 + D3D2D1 + D3D2D0

D3D1

D3D2D0 D3D2D1

D3D2D0

Sa

In a K-map, X’s allow for even more logic minimization. They can
be circled if they help cover the 1’s with fewer or larger circles, but they
do not have to be circled if they are not helpful.

Example 2.11 SEVEN-SEGMENT DISPLAY DECODER WITH DON’T CARES

Repeat Example 2.10 if we don’t care about the output values for illegal input
values of 10 to 15.

Solution: The K-map is shown in Figure 2.53 with X entries representing don’t
care. Because don’t cares can be 0 or 1, we circle a don’t care if it allows us to
cover the 1’s with fewer or bigger circles. Circled don’t cares are treated as 1’s,
whereas uncircled don’t cares are 0’s. Observe how a 2 � 2 square wrapping
around all four corners is circled for segment Sa. Use of don’t cares simplifies the
logic substantially.

2 .7. 4 The Big Picture

Boolean algebra and Karnaugh maps are two methods for logic simplifi-
cation. Ultimately, the goal is to find a low-cost method of implementing
a particular logic function.

In modern engineering practice, computer programs called logic
synthesizers produce simplified circuits from a description of the logic
function, as we will see in Chapter 4. For large problems, logic synthe-
sizers are much more efficient than humans. For small problems, a
human with a bit of experience can find a good solution by inspection.
Neither of the authors has ever used a Karnaugh map in real life to

78 CHAPTER TWO Combinational Logic Design

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

0

11

10

00

00

10
D3:2

D1:0

Sa

D3D1

D3D2D0 D3D2D1

D3D2D1D0

Sa = D3D1 + D3D2D0 + D3D2D1 + D3D2D1D0

Figure 2.52 Alternative K-map
for Sa showing incorrect
nonprime implicant

solve a practical problem. But the insight gained from the principles
underlying Karnaugh maps is valuable. And Karnaugh maps often
appear at job interviews!

2 . 8 COMBINATIONAL BUILDING BLOCKS
Combinational logic is often grouped into larger building blocks to
build more complex systems. This is an application of the principle of
abstraction, hiding the unnecessary gate-level details to emphasize the
function of the building block. We have already studied three such
building blocks: full adders (from Section 2.1), priority circuits (from
Section 2.4), and seven-segment display decoders (from Section 2.7).
This section introduces two more commonly used building blocks:
multiplexers and decoders. Chapter 5 covers other combinational
building blocks.

2 . 8 .1 Multiplexers

Multiplexers are among the most commonly used combinational cir-
cuits. They choose an output from among several possible inputs based
on the value of a select signal. A multiplexer is sometimes affectionately
called a mux.

2:1 Multiplexer
Figure 2.54 shows the schematic and truth table for a 2:1 multiplexer
with two data inputs, D0 and D1, a select input, S, and one output, Y.
The multiplexer chooses between the two data inputs based on the
select: if S � 0, Y � D0, and if S � 1, Y � D1. S is also called a control
signal because it controls what the multiplexer does.

2.8 Combinational Building Blocks 79

Figure 2.53 K-map solution
with don’t cares

01 11

1

0

0

1

X

X

1

101

1

1

1

1

X

X

X

X

11

10

00

00

10 01 11

1

1

1

0

X

X

1

101

1

1

1

0

X

X

X

X

11

10

00

00

10
D3:2

D1:0

Sa D3:2
D1:0

Sb

Sb = D3 + D3D2 + D1D0 + D1D0Sa = D1 + D3 + D2D0 + D2D0

Figure 2.54 2:1 multiplexer
symbol and truth table

Y
0 0
0 1
1 0
1 1

0
1
0
1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1

0

1

S

D0
Y

D1

D1 D0S

A 2:1 multiplexer can be built from sum-of-products logic as shown
in Figure 2.55. The Boolean equation for the multiplexer may be derived
with a Karnaugh map or read off by inspection (Y is 1 if S � 0 AND D0
is 1 OR if S � 1 AND D1 is 1).

Alternatively, multiplexers can be built from tristate buffers, as
shown in Figure 2.56. The tristate enables are arranged such that, at
all times, exactly one tristate buffer is active. When S � 0, tristate T0
is enabled, allowing D0 to flow to Y. When S � 1, tristate T1 is
enabled, allowing D1 to flow to Y.

Wider Multiplexers
A 4:1 multiplexer has four data inputs and one output, as shown
in Figure 2.57. Two select signals are needed to choose among the four
data inputs. The 4:1 multiplexer can be built using sum-of-products
logic, tristates, or multiple 2:1 multiplexers, as shown in Figure 2.58.

The product terms enabling the tristates can be formed using AND
gates and inverters. They can also be formed using a decoder, which we
will introduce in Section 2.8.2.

Wider multiplexers, such as 8:1 and 16:1 multiplexers, can be built
by expanding the methods shown in Figure 2.58. In general, an N:1
multiplexer needs log2N select lines. Again, the best implementation
choice depends on the target technology.

Multiplexer Logic
Multiplexers can be used as lookup tables to perform logic functions.
Figure 2.59 shows a 4:1 multiplexer used to implement a two-input

80 CHAPTER TWO Combinational Logic Design

D1

Y

D0

S

S 00 01

0

1

Y

11 10
D1:0

0

0

1

0

1

1

0

1

Y = D0S + D1S
Figure 2.55 2:1 multiplexer
implementation using two-level
logic

Figure 2.56 Multiplexer using
tristate buffers

Figure 2.57 4:1 multiplexer

Y

D0

S

T0

T1

Y = D0S + D1S

D1

00

S1:0

D0
D1 Y

01

10

11

D2
D3

2

Shorting together the outputs
of multiple gates technically
violates the rules for combina-
tional circuits given in Section
2.1. But because exactly one of
the outputs is driven at any
time, this exception is allowed.

AND gate. The inputs, A and B, serve as select lines. The multiplexer
data inputs are connected to 0 or 1 according to the corresponding row
of the truth table. In general, a 2N-input multiplexer can be pro-
grammed to perform any N-input logic function by applying 0’s and 1’s
to the appropriate data inputs. Indeed, by changing the data inputs, the
multiplexer can be reprogrammed to perform a different function.

With a little cleverness, we can cut the multiplexer size in half, using
only a 2N�1-input multiplexer to perform any N-input logic function.
The strategy is to provide one of the literals, as well as 0’s and 1’s, to the
multiplexer data inputs.

To illustrate this principle, Figure 2.60 shows two-input AND and
XOR functions implemented with 2:1 multiplexers. We start with an
ordinary truth table, and then combine pairs of rows to eliminate the
rightmost input variable by expressing the output in terms of this
variable. For example, in the case of AND, when A � 0, Y � 0, regard-
less of B. When A � 1, Y � 0 if B � 0 and Y � 1 if B � 1, so Y � B.
We then use the multiplexer as a lookup table according to the new,
smaller truth table.

Example 2.12 LOGIC WITH MULTIPLEXERS

Alyssa P. Hacker needs to implement the function to fin-
ish her senior project, but when she looks in her lab kit, the only part she has left
is an 8:1 multiplexer. How does she implement the function?

Solution: Figure 2.61 shows Alyssa’s implementation using a single 8:1 multi-
plexer. The multiplexer acts as a lookup table where each row in the truth table
corresponds to a multiplexer input.

Y � AB � B C � ABC

2.8 Combinational Building Blocks 81

Figure 2.58 4:1 multiplexer
implementations: (a) two-
level logic, (b) tristates,
(c) hierarchical

(a)
Y

D0

D1

D2

D3

(b) (c)

S0

Y

0

1

0

1

0

1

S1

D0

D1

D2

D3

Y

S1S0

S1S0

S1S0

S1S0

D0

D2

D3

D1

S1 S0

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y = AB

00

Y01
10

11

A B

Figure 2.59 4:1 multiplexer
implementation of two-input
AND function

Example 2.13 LOGIC WITH MULTIPLEXERS, REPRISED

Alyssa turns on her circuit one more time before the final presentation and
blows up the 8:1 multiplexer. (She accidently powered it with 20 V instead of 5
V after not sleeping all night.) She begs her friends for spare parts and they
give her a 4:1 multiplexer and an inverter. Can she build her circuit with only
these parts?

Solution: Alyssa reduces her truth table to four rows by letting the output
depend on C. (She could also have chosen to rearrange the columns of the truth
table to let the output depend on A or B.) Figure 2.62 shows the new design.

2 . 8 . 2 Decoders

A decoder has N inputs and 2N outputs. It asserts exactly one of its
outputs depending on the input combination. Figure 2.63 shows a
2:4 decoder. When A1:0 � 00, Y0 is 1. When A1:0 � 01, Y1 is 1. And so
forth. The outputs are called one-hot, because exactly one is “hot”
(HIGH) at a given time.

82 CHAPTER TWO Combinational Logic Design

Figure 2.61 Alyssa’s circuit:
(a) truth table, (b) 8:1
multiplexer implementation

A B Y
0 0 1
0 1 0
1 0 0
1 1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0

C

(a)
Y = AB + BC + ABC

CA B

(b)

000
001
010
011
100
101
110
111

Y

Figure 2.60 Multiplexer logic
using variable inputs

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

A Y

0

1

A

B
Y

1 B
Y = A ⊕ B

B0 B

(b)

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y = AB

A Y

0 0 0

1

A

B
Y

1 B

(a)

Example 2.14 DECODER IMPLEMENTATION

Implement a 2:4 decoder with AND, OR, and NOT gates.

Solution: Figure 2.64 shows an implementation for the 2:4 decoder using four
AND gates. Each gate depends on either the true or the complementary form of
each input. In general, an N:2N decoder can be constructed from 2N N-input AND
gates that accept the various combinations of true or complementary inputs. Each
output in a decoder represents a single minterm. For example, Y0 represents the
minterm . This fact will be handy when using decoders with other digital
building blocks.

A1A0

Decoder Logic
Decoders can be combined with OR gates to build logic functions.
Figure 2.65 shows the two-input XNOR function using a 2:4 decoder
and a single OR gate. Because each output of a decoder represents a
single minterm, the function is built as the OR of all the minterms in the
function. In Figure 2.65, .Y � A B � AB � A�B

2.8 Combinational Building Blocks 83

A B Y
0 0 1
0 1 0
1 0 0
1 1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0

C

(a)

A Y
0 0
0 1
1 0 1
1 1 0

B
C
C

00

Y01
10

11

A B

C

(b) (c)

Figure 2.62 Alyssa’s new circuit

Figure 2.63 2:4 decoder

2:4
Decoder

A1

A0

Y3
Y2
Y1
Y000

01
10
11

0 0
0 1
1 0
1 1

0
0
0
1

Y3 Y2 Y1 Y0A0A1

0
0
1
0

0
1
0
0

1
0
0
0

Figure 2.64 2:4 decoder implementation

A1 A0

Y3

Y2

Y1

Y0

Figure 2.65 Logic function using
decoder

2:4
Decoder

A
B

00
01
10
11

Y = A B

Y

AB
AB
AB
AB

Minterm

⊕

When using decoders to build logic, it is easiest to express functions
as a truth table or in canonical sum-of-products form. An N-input func-
tion with M 1’s in the truth table can be built with an N:2N decoder and
an M-input OR gate attached to all of the minterms containing 1’s in the
truth table. This concept will be applied to the building of Read Only
Memories (ROMs) in Section 5.5.6.

2 . 9 TIMING
In previous sections, we have been concerned primarily with whether the
circuit works—ideally, using the fewest gates. However, as any seasoned
circuit designer will attest, one of the most challenging issues in circuit
design is timing: making a circuit run fast.

An output takes time to change in response to an input change.
Figure 2.66 shows the delay between an input change and the
subsequent output change for a buffer. The figure is called a timing
diagram; it portrays the transient response of the buffer circuit when
an input changes. The transition from LOW to HIGH is called the
rising edge. Similarly, the transition from HIGH to LOW (not shown
in the figure) is called the falling edge. The blue arrow indicates
that the rising edge of Y is caused by the rising edge of A. We measure
delay from the 50% point of the input signal, A, to the 50% point
of the output signal, Y. The 50% point is the point at which the
signal is half-way (50%) between its LOW and HIGH values as it
transitions.

2 . 9 .1 Propagation and Contamination Delay

Combinational logic is characterized by its propagation delay and
contamination delay. The propagation delay, tpd, is the maximum time
from when an input changes until the output or outputs reach their
final value. The contamination delay, tcd, is the minimum time from
when an input changes until any output starts to change its value.

84 CHAPTER TWO Combinational Logic Design

Figure 2.66 Circuit delay
A

Y

Time

delay

A Y

When designers speak of cal-
culating the delay of a circuit,
they generally are referring to
the worst-case value (the
propagation delay), unless it
is clear otherwise from the
context.

Figure 2.67 illustrates a buffer’s propagation delay and contami-
nation delay in blue and gray, respectively. The figure shows that A is
initially either HIGH or LOW and changes to the other state at a par-
ticular time; we are interested only in the fact that it changes, not
what value it has. In response, Y changes some time later. The arcs
indicate that Y may start to change tcd after A transitions and that Y
definitely settles to its new value within tpd.

The underlying causes of delay in circuits include the time required
to charge the capacitance in a circuit and the speed of light. tpd and tcd
may be different for many reasons, including

� different rising and falling delays

� multiple inputs and outputs, some of which are faster than others

� circuits slowing down when hot and speeding up when cold

Calculating tpd and tcd requires delving into the lower levels of
abstraction beyond the scope of this book. However, manufacturers nor-
mally supply data sheets specifying these delays for each gate.

Along with the factors already listed, propagation and contamina-
tion delays are also determined by the path a signal takes from input to
output. Figure 2.68 shows a four-input logic circuit. The critical path,
shown in blue, is the path from input A or B to output Y. It is the
longest, and therefore the slowest, path, because the input travels

2.9 Timing 85

Figure 2.67 Propagation and
contamination delay

A Y

A

Y

Time

tpd

tcd

A
B

C

D Y

Critical Path

Short Path

n1

n2 Figure 2.68 Short path and
critical path

Circuit delays are ordinarily
on the order of picoseconds
(1 ps � 10�12 seconds) to
nanoseconds (1 ns � 10�9

seconds). Trillions of picosec-
onds have elapsed in the time
you spent reading this sidebar.

through three gates to the output. This path is critical because it limits
the speed at which the circuit operates. The short path through the cir-
cuit, shown in gray, is from input D to output Y. This is the shortest, and
therefore the fastest, path through the circuit, because the input travels
through only a single gate to the output.

The propagation delay of a combinational circuit is the sum of the
propagation delays through each element on the critical path. The
contamination delay is the sum of the contamination delays through
each element on the short path. These delays are illustrated in Figure
2.69 and are described by the following equations:

(2.7)

(2.8)

Example 2.15 FINDING DELAYS

Ben Bitdiddle needs to find the propagation delay and contamination delay of
the circuit shown in Figure 2.70. According to his data book, each gate has
a propagation delay of 100 picoseconds (ps) and a contamination delay
of 60 ps.

Solution: Ben begins by finding the critical path and the shortest path through
the circuit. The critical path, highlighted in blue in Figure 2.71, is from input A

tcd � tcd�AND

tpd � 2tpd�AND � tpd�OR

86 CHAPTER TWO Combinational Logic Design

A = 1 0

Y = 1 0

D

Y

delay

Time

A

Y

delay

A = 1
B = 1

C = 0

D = 1 0 Y = 1 0

Short Path

Critical Path

Time

n1

n2

n1

n2

n1

n2

B = 1

C = 0

D = 1

Figure 2.69 Critical and short path waveforms

Although we are ignoring wire
delay in this analysis, digital
circuits are now so fast that
the delay of long wires can be
as important as the delay of
the gates. The speed of light
delay in wires is covered in
Appendix A.

or B through three gates to the output, Y. Hence, tpd is three times the propaga-
tion delay of a single gate, or 300 ps.

The shortest path, shown in gray in Figure 2.72, is from input C, D, or E
through two gates to the output, Y. There are only two gates in the shortest path,
so tcd is 120 ps.

Example 2.16 MULTIPLEXER TIMING: CONTROL-CRITICAL
VS. DATA-CRITICAL

Compare the worst-case timing of the three four-input multiplexer designs
shown in Figure 2.58 in Section 2.8.1. Table 2.7 lists the propagation delays for
the components. What is the critical path for each design? Given your timing
analysis, why might you choose one design over the other?

Solution: One of the critical paths for each of the three design options is
highlighted in blue in Figures 2.73 and 2.74. tpd_sy indicates the propagation
delay from input S to output Y; tpd_dy indicates the propagation delay from
input D to output Y; tpd is the worst of the two: max(tpd_sy, tpd_dy).

For both the two-level logic and tristate implementations in Figure 2.73, the
critical path is from one of the control signals, S, to the output, Y: tpd � tpd_sy.
These circuits are control critical, because the critical path is from the control
signals to the output. Any additional delay in the control signals will add directly
to the worst-case delay. The delay from D to Y in Figure 2.73(b) is only 50 ps,
compared with the delay from S to Y of 125 ps.

2.9 Timing 87

A
B

C

D
E

Y Figure 2.70 Ben’s circuit

Figure 2.71 Ben’s critical path

A
B

C

D
E

Y

Figure 2.72 Ben’s shortest path

A
B

C

D
E

Y

Figure 2.74 shows the hierarchical implementation of the 4:1 multiplexer using
two stages of 2:1 multiplexers. The critical path is from any of the D inputs to
the output. This circuit is data critical, because the critical path is from the data
input to the output: (tpd � tpd_dy).

If data inputs arrive well before the control inputs, we would prefer the design
with the shortest control-to-output delay (the hierarchical design in Figure 2.74).
Similarly, if the control inputs arrive well before the data inputs, we would
prefer the design with the shortest data-to-output delay (the tristate design in
Figure 2.73(b)).

The best choice depends not only on the critical path through the circuit and
the input arrival times, but also on the power, cost, and availability of parts.

2 . 9 . 2 Glitches

So far we have discussed the case where a single input transition causes a
single output transition. However, it is possible that a single input transi-
tion can cause multiple output transitions. These are called glitches or
hazards. Although glitches usually don’t cause problems, it is important
to realize that they exist and recognize them when looking at timing dia-
grams. Figure 2.75 shows a circuit with a glitch and the Karnaugh map
of the circuit.

The Boolean equation is correctly minimized, but let’s look at what
happens when A � 0, C � 1, and B transitions from 1 to 0. Figure 2.76
(see page 90) illustrates this scenario. The short path (shown in gray)
goes through two gates, the AND and OR gates. The critical path (shown
in blue) goes through an inverter and two gates, the AND and OR gates.

88 CHAPTER TWO Combinational Logic Design

Gate tpd (ps)

NOT 30

2-input AND 60

3-input AND 80

4-input OR 90

tristate (A to Y) 50

tristate (enable to Y) 35

Table 2.7 Timing specifications for
multiplexer circuit elements

Hazards have another mean-
ing related to microarchitec-
ture in Chapter 7, so we will
stick with the term glitches
for multiple output transitions
to avoid confusion.

2.9 Timing 89

Figure 2.73 4:1 multiplexer
propagation delays:
(a) two-level logic,
(b) tristate

tpd_sy = tpd_INV + tpd_AND3 + tpd_OR4

= 30 ps + 80 ps + 90 ps

= 200 ps

S1

D0

D1

D2

D3

Out

S0

(a)
tpd_dy = tpd_AND3 + tpd_OR4

= 170 ps

D2

D3

Out

S1 S0

tpd_sy = tpd_INV + tpd_AND2 + tpd_TRI_SY

 = 30 ps + 60 ps + 35 ps

 = 125 ps(b)
tpd_dy = tpd_TRI_AY

= 50 ps

D0

D1

S0

D0

D1

D2

D3

S1

Y

t pd_s0y = t pd_TRLSY + t pd_TRI_AY = 85 ns

2:1 mux

2:1 mux

2:1 mux

t pd_dy = 2 t pd_TRI_AY = 100 ns

Figure 2.74 4:1 multiplexer propagation
delays: hierarchical using 2:1 multiplexers

As B transitions from 1 to 0, n2 (on the short path) falls before n1
(on the critical path) can rise. Until n1 rises, the two inputs to the OR
gate are 0, and the output Y drops to 0. When n1 eventually rises, Y
returns to 1. As shown in the timing diagram of Figure 2.76, Y starts at
1 and ends at 1 but momentarily glitches to 0.

A
B

C

Y

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC

Figure 2.75 Circuit with a glitch

90 CHAPTER TWO Combinational Logic Design

Figure 2.77 Input change
crosses implicant boundary

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC

Figure 2.76 Timing of a glitch

A = 0

C = 1

B = 1 0
Y = 1 0 1

Short Path

Critical Path

B

Y

Time

1 0

0 1

glitch

n1

n2

n2

n1

As long as we wait for the propagation delay to elapse before we
depend on the output, glitches are not a problem, because the output
eventually settles to the right answer.

If we choose to, we can avoid this glitch by adding another gate to
the implementation. This is easiest to understand in terms of the K-map.
Figure 2.77 shows how an input transition on B from ABC � 001 to
ABC � 011 moves from one prime implicant circle to another. The tran-
sition across the boundary of two prime implicants in the K-map
indicates a possible glitch.

As we saw from the timing diagram in Figure 2.76, if the circuitry
implementing one of the prime implicants turns off before the
circuitry of the other prime implicant can turn on, there is a glitch.
To fix this, we add another circle that covers that prime implicant
boundary, as shown in Figure 2.78. You might recognize this as the
consensus theorem, where the added term, , is the consensus or
redundant term.

A C

2.10 Summary 91

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC + AC AC

B = 1 0
Y = 1

A = 0

C = 1

Figure 2.78 K-map without
glitch

Figure 2.79 Circuit without
glitch

Figure 2.79 shows the glitch-proof circuit. The added AND gate is
highlighted in blue. Now a transition on B when A � 0 and C � 1 does
not cause a glitch on the output, because the blue AND gate outputs 1
throughout the transition.

In general, a glitch can occur when a change in a single variable
crosses the boundary between two prime implicants in a K-map. We can
eliminate the glitch by adding redundant implicants to the K-map
to cover these boundaries. This of course comes at the cost of extra
hardware.

However, simultaneous transitions on multiple variables can also
cause glitches. These glitches cannot be fixed by adding hardware.
Because the vast majority of interesting systems have simultaneous (or
near-simultaneous) transitions on multiple variables, glitches are a fact
of life in most circuits. Although we have shown how to eliminate one
kind of glitch, the point of discussing glitches is not to eliminate them
but to be aware that they exist. This is especially important when look-
ing at timing diagrams on a simulator or oscilloscope.

2 .1 0 SUMMARY
A digital circuit is a module with discrete-valued inputs and outputs and
a specification describing the function and timing of the module. This
chapter has focused on combinational circuits, circuits whose outputs
depend only on the current values of the inputs.

The function of a combinational circuit can be given by a truth
table or a Boolean equation. The Boolean equation for any truth table
can be obtained systematically using sum-of-products or product-of-
sums form. In sum-of-products form, the function is written as the
sum (OR) of one or more implicants. Implicants are the product
(AND) of literals. Literals are the true or complementary forms of the
input variables.

Boolean equations can be simplified using the rules of Boolean alge-
bra. In particular, they can be simplified into minimal sum-of-products
form by combining implicants that differ only in the true and comple-
mentary forms of one of the literals: . Karnaugh maps are
a visual tool for minimizing functions of up to four variables. With prac-
tice, designers can usually simplify functions of a few variables by
inspection. Computer-aided design tools are used for more complicated
functions; such methods and tools are discussed in Chapter 4.

Logic gates are connected to create combinational circuits that per-
form the desired function. Any function in sum-of-products form can be
built using two-level logic with the literals as inputs: NOT gates form
the complementary literals, AND gates form the products, and OR gates
form the sum. Depending on the function and the building blocks avail-
able, multilevel logic implementations with various types of gates may be
more efficient. For example, CMOS circuits favor NAND and NOR
gates because these gates can be built directly from CMOS transistors
without requiring extra NOT gates. When using NAND and NOR
gates, bubble pushing is helpful to keep track of the inversions.

Logic gates are combined to produce larger circuits such as multiplex-
ers, decoders, and priority circuits. A multiplexer chooses one of the data
inputs based on the select input. A decoder sets one of the outputs HIGH
according to the input. A priority circuit produces an output indicating the
highest priority input. These circuits are all examples of combinational
building blocks. Chapter 5 will introduce more building blocks, including
other arithmetic circuits. These building blocks will be used extensively to
build a microprocessor in Chapter 7.

The timing specification of a combinational circuit consists of the
propagation and contamination delays through the circuit. These indi-
cate the longest and shortest times between an input change and the
consequent output change. Calculating the propagation delay of a circuit
involves identifying the critical path through the circuit, then adding up
the propagation delays of each element along that path. There are many
different ways to implement complicated combinational circuits; these
ways offer trade-offs between speed and cost.

The next chapter will move to sequential circuits, whose outputs
depend on previous as well as current values of the inputs. In other
words, sequential circuits have memory of the past.

PA � PA � P

92 CHAPTER TWO Combinational Logic Design

Exercises 93

Exercises

Exercise 2.1 Write a Boolean equation in sum-of-products canonical form for
each of the truth tables in Figure 2.80.

Exercise 2.2 Write a Boolean equation in product-of-sums canonical form for
the truth tables in Figure 2.80.

Exercise 2.3 Minimize each of the Boolean equations from Exercise 2.1.

Exercise 2.4 Sketch a reasonably simple combinational circuit implementing
each of the functions from Exercise 2.3. Reasonably simple means that you are
not wasteful of gates, but you don’t waste vast amounts of time checking every
possible implementation of the circuit either.

Exercise 2.5 Repeat Exercise 2.4 using only NOT gates and AND and OR
gates.

Exercise 2.6 Repeat Exercise 2.4 using only NOT gates and NAND and NOR
gates.

Exercise 2.7 Simplify the following Boolean equations using Boolean theorems.
Check for correctness using a truth table or K-map.

(a)

(b)

(c) Y �A B C D � AB C � ABCD � ABD �A BCD � BCD � A

Y � A B � A B C � (A � C)

Y � AC � A BC

B C Y
0 0
0 1
1 0
1 1

1
0
1
0

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
1

B C Y
0 0
0 1
1 0
1 1

1
0
0
0

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
1

A B Y
0 0
0 1
1 0
1 1

1
0
1
1

C D Y
0 0
0 1
1 0
1 1

1
1
1
1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0

A

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

1
0
1
0
0
0
1
0

C D Y
0 0
0 1
1 0
1 1

1
0
0
1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
1
1
0

A

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
1
1
0
1
0
0
1

(a) (b) (c) (d) (e)

Figure 2.80 Truth tables

94 CHAPTER TWO Combinational Logic Design

Exercise 2.8 Sketch a reasonably simple combinational circuit implementing
each of the functions from Exercise 2.7.

Exercise 2.9 Simplify each of the following Boolean equations. Sketch a reason-
ably simple combinational circuit implementing the simplified equation.

(a)

(b)

(c) Y � ABC � ABD � ABE � ACD � ACE � �

� � �

Exercise 2.10 Give an example of a truth table requiring between 3 billion and
5 billion rows that can be constructed using fewer than 40 (but at least 1)
two-input gates.

Exercise 2.11 Give an example of a circuit with a cyclic path that is nevertheless
combinational.

Exercise 2.12 Alyssa P. Hacker says that any Boolean function can be written in
minimal sum-of-products form as the sum of all of the prime implicants of the
function. Ben Bitdiddle says that there are some functions whose minimal equa-
tion does not involve all of the prime implicants. Explain why Alyssa is right or
provide a counterexample demonstrating Ben’s point.

Exercise 2.13 Prove that the following theorems are true using perfect induction.
You need not prove their duals.

(a) The idempotency theorem (T3)

(b) The distributivity theorem (T8)

(c) The combining theorem (T10)

Exercise 2.14 Prove De Morgan’s Theorem (T12) for three variables, B2, B1, B0,
using perfect induction.

Exercise 2.15 Write Boolean equations for the circuit in Figure 2.81. You need
not minimize the equations.

C D EB D EB CE
B C D(A � D � E)

Y � A � A B � A B � A � B

Y � BC � A B C � BC

Exercises 95

Exercise 2.16 Minimize the Boolean equations from Exercise 2.15 and sketch an
improved circuit with the same function.

Exercise 2.17 Using De Morgan equivalent gates and bubble pushing methods,
redraw the circuit in Figure 2.82 so that you can find the Boolean equation by
inspection. Write the Boolean equation.

Exercise 2.18 Repeat Exercise 2.17 for the circuit in Figure 2.83.

A B C D

Y Z

A
B

C
D
E Y

Figure 2.81 Circuit schematic

Figure 2.82 Circuit schematic

96 CHAPTER TWO Combinational Logic Design

Exercise 2.19 Find a minimal Boolean equation for the function in Figure 2.84.
Remember to take advantage of the don’t care entries.

Exercise 2.20 Sketch a circuit for the function from Exercise 2.19.

Exercise 2.21 Does your circuit from Exercise 2.20 have any potential glitches
when one of the inputs changes? If not, explain why not. If so, show how to
modify the circuit to eliminate the glitches.

Exercise 2.22 Ben Bitdiddle will enjoy his picnic on sunny days that have no
ants. He will also enjoy his picnic any day he sees a hummingbird, as well as on
days where there are ants and ladybugs. Write a Boolean equation for his enjoy-
ment (E) in terms of sun (S), ants (A), hummingbirds (H), and ladybugs (L).

C D Y
0 0 X
0 1 X
1 0 X
1 1 0

B

0 0
0 1
1 0
1 1

0
X
0
X

0
0
0
0
1
1
1
1

A
0
0
0
0
0
0
0
0

0 0 1
0 1 0
1 0 X
1 1 1
0 0
0 1
1 0
1 1

1
1
X
1

0
0
0
0
1
1
1
1

1
1
1
1
1
1
1
1

Figure 2.84 Truth table

A
B
C

D

E

F
G

Y

Figure 2.83 Circuit schematic

Exercises 97

Exercise 2.23 Complete the design of the seven-segment decoder segments Sc

through Sg (see Example 2.10):

(a) Derive Boolean equations for the outputs Sc through Sg assuming that inputs
greater than 9 must produce blank (0) outputs.

(b) Derive Boolean equations for the outputs Sc through Sg assuming that inputs
greater than 9 are don’t cares.

(c) Sketch a reasonably simple gate-level implementation of part (b). Multiple
outputs can share gates where appropriate.

Exercise 2.24 A circuit has four inputs and two outputs. The inputs, A3:0, repre-
sent a number from 0 to 15. Output P should be TRUE if the number is prime
(0 and 1 are not prime, but 2, 3, 5, and so on, are prime). Output D should be
TRUE if the number is divisible by 3. Give simplified Boolean equations for each
output and sketch a circuit.

Exercise 2.25 A priority encoder has 2N inputs. It produces an N-bit binary out-
put indicating the most significant bit of the input that is TRUE, or 0 if none of
the inputs are TRUE. It also produces an output NONE that is TRUE if none of
the input bits are TRUE. Design an eight-input priority encoder with inputs A7:0

and outputs Y2:0 and NONE. For example, if the input is 00100000, the output
Y should be 101 and NONE should be 0. Give a simplified Boolean equation for
each output, and sketch a schematic.

Exercise 2.26 Design a modified priority encoder (see Exercise 2.25) that
receives an 8-bit input, A7:0, and produces two 3-bit outputs, Y2:0 and Z2:0.
Y indicates the most significant bit of the input that is TRUE. Z indicates the
second most significant bit of the input that is TRUE. Y should be 0 if none of
the inputs are TRUE. Z should be 0 if no more than one of the inputs is TRUE.
Give a simplified Boolean equation for each output, and sketch a schematic.

Exercise 2.27 An M-bit thermometer code for the number k consists of k 1’s in
the least significant bit positions and M � k 0’s in all the more significant bit
positions. A binary-to-thermometer code converter has N inputs and 2N�1
outputs. It produces a 2N�1 bit thermometer code for the number specified by
the input. For example, if the input is 110, the output should be 0111111.
Design a 3:7 binary-to-thermometer code converter. Give a simplified Boolean
equation for each output, and sketch a schematic.

Exercise 2.28 Write a minimized Boolean equation for the function performed
by the circuit in Figure 2.85.

98 CHAPTER TWO Combinational Logic Design

Exercise 2.30 Implement the function from Figure 2.80(b) using

(a) an 8:1 multiplexer

(b) a 4:1 multiplexer and one inverter

(c) a 2:1 multiplexer and two other logic gates

Exercise 2.31 Implement the function from Exercise 2.9(a) using

(a) an 8:1 multiplexer

(b) a 4:1 multiplexer and no other gates

(c) a 2:1 multiplexer, one OR gate, and an inverter

Exercise 2.32 Determine the propagation delay and contamination delay of the
circuit in Figure 2.83. Use the gate delays given in Table 2.8.

Exercise 2.29 Write a minimized Boolean equation for the function performed
by the circuit in Figure 2.86.

Figure 2.85 Multiplexer circuit

0

1

00

C, D

01
10

11

A

Y

Figure 2.86 Multiplexer circuit

00

C, D

01
10

11

Y

00

A, B

01
10

11

Exercises 99

Exercise 2.33 Sketch a schematic for a fast 3:8 decoder. Suppose gate delays are
given in Table 2.8 (and only the gates in that table are available). Design your
decoder to have the shortest possible critical path, and indicate what that path is.
What are its propagation delay and contamination delay?

Exercise 2.34 Redesign the circuit from Exercise 2.24 to be as fast as possible.
Use only the gates from Table 2.8. Sketch the new circuit and indicate the critical
path. What are its propagation delay and contamination delay?

Exercise 2.35 Redesign the priority encoder from Exercise 2.25 to be as fast
as possible. You may use any of the gates from Table 2.8. Sketch the new
circuit and indicate the critical path. What are its propagation delay and
contamination delay?

Exercise 2.36 Design an 8:1 multiplexer with the shortest possible delay from
the data inputs to the output. You may use any of the gates from Table 2.7 on
page 88. Sketch a schematic. Using the gate delays from the table, determine
this delay.

Gate tpd (ps) tcd (ps)

NOT 15 10

2-input NAND 20 15

3-input NAND 30 25

2-input NOR 30 25

3-input NOR 45 35

2-input AND 30 25

3-input AND 40 30

2-input OR 40 30

3-input OR 55 45

2-input XOR 60 40

Table 2.8 Gate delays for Exercises 2.32–2.35

100 CHAPTER TWO Combinational Logic Design

Interview Questions

The following exercises present questions that have been asked at interviews for
digital design jobs.

Question 2.1 Sketch a schematic for the two-input XOR function using only
NAND gates. How few can you use?

Question 2.2 Design a circuit that will tell whether a given month has 31 days
in it. The month is specified by a 4-bit input, A3:0. For example, if the inputs
are 0001, the month is January, and if the inputs are 1100, the month is
December. The circuit output, Y, should be HIGH only when the month speci-
fied by the inputs has 31 days in it. Write the simplified equation, and draw
the circuit diagram using a minimum number of gates. (Hint: Remember to
take advantage of don’t cares.)

Question 2.3 What is a tristate buffer? How and why is it used?

Question 2.4 A gate or set of gates is universal if it can be used to construct any
Boolean function. For example, the set {AND, OR, NOT} is universal.

(a) Is an AND gate by itself universal? Why or why not?

(b) Is the set {OR, NOT} universal? Why or why not?

(c) Is a NAND gate by itself universal? Why or why not?

Question 2.5 Explain why a circuit’s contamination delay might be less than
(instead of equal to) its propagation delay.

