

Centrum pro výzkum toxických látek v prostředí

Ecotoxic effects - Introduction –

Luděk Bláha, PřF MU

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Characteristics & properties of a living entity ?

- Structure
- Functioning

pinterest.com

WHAT IS ECOTOXIC EFFECT ?

Effects at different levels - ORGANISM

Ecotoxicologicological effects (see also Bioassays)

- Effects on structure
- Effects on metabolism (maintenance)
- Effects on regulation

→Changes in functions (e.g. hormones, EE2)
 →Repair, survival, growth
 →Death (lethality)
 →Proliferation = Reproduction

3 key apical endpoints (reflected e.g. in regulations)

WHAT IS ECOTOXIC EFFECT ?

WHAT HAPPENS "BEFORE" EFFECT MANIFESTATION ?

WHAT ARE THE CONSEQUENCES OF THE EFFECT ?

Exposure \rightarrow TK \rightarrow TD \rightarrow Effects

Figure 1 The effective concentration of a pollutant in an organism (e.g. fish, daphnia, algae) or at the target site inside the organism is the link between the environmental fate of a pollutant and its toxic effect.

Escher, B. I., Behra, R., Eggen, R. I. L., Fent, K. (1997), "Molecular mechanisms in ecotoxicology: an interplay between environmental chemistry and biology", *Chimia*, 51, 915-921.

Toxicokinetics → ToxicoDYNAMICS

Target sites = molecules

MECHANISMS OF TOXICITY

Centrum pro výzkum

prostředí

From molecules to individuals \rightarrow to populations

ADVERSE OUTCOME PATHWAYS

Mechanistic effect models for ecotoxicology

→ Arrows indicate a causal relationship

See also: Ashauer & Escher JEM (2010), Rubach et al. IEAM (2011), Jager et al. ES&T (2011), Ashauer et al. ET&C (2011) www.ecotoxmodels.org

It all starts with MoA = Mechanisms of Action (MoA)

- According to target molecules (next slide)
 - Mechanisms primarily targeting different
 - BIOLOGICAL MACROMOLECULES
 - i.e. PROTEINS and/or NUCLEIC ACIDS and/or PHOSPHOLIPIDS
 - SMALL BIOLOGICAL (ORGANIC) MOLECULES
 - E.g. Antioxidants or scavengers (vit.E, GSH)
- According to INTERACTION between toxicant/target (next slide)
 - Non-covalent interactions
 - Partitioning (v d Waals, H-bonds, hydrophobic interactions)
 - Partitioning with specific steric fit

 \rightarrow [1] below \rightarrow [3] below

- Formation of covalent bonds
 - ... with proteins / DNA-RNA / P-lipids / small molecules

 \rightarrow [2] below

According to "STERIC SPECIFICITY" of the interaction

- NON-SPECIFIC MECHANISMS
 - the interaction between the toxicant and the target occurs "generally" with any target of certain general properties (e.g. toxicant is able to bind to ANY protein having e.g. SH- group), it does not require specific steric (structural) properties of the target
 - mechanisms [1] and [2] below
- SPECIFIC MECHANISMS
 - the toxicant interacts only with certain and specific structural properties (e.g. specific binding of a pesticide into the active site of enzyme acetylcholinesterase)
 - mechanism [3]

Target (receptor) in MoA / toxicodynamic = BIOMOLECULE

Figure 2 Rationale behind the classification of chemicals according to mechanism: target sites and type of interaction.

Categorizations of MoAs

• [1] non/specific membrane toxicity

- Involves ALL ORGANIC compounds
- Affinity to non-polar environment (membrane phospholipids)
- Two types can be discriminated
 - nonpolar basal / narcotic toxicity
 - effects observed at relatively high concentrations, depends on hydrophobicity (Kow)
 - polar narcosis
 - more polar compounds may affect also membrane proteins (effects at lower concentrations than expected from Kow)

• [2] nonspecific reactive toxicity

- some compounds with "reactive" properties may directly modify biological macromolecule (lipids, proteins, nucleic acids) causing thus toxic effects
- reactive chemicals are mostly "electrophiles" (reacting with "nucleophiles" in cells i.e. electrone-rich sites nucleotides, -NH2, -SH and others), and also toxic (heavy) metals

• [3] specific steric interactions

- only certain specific compounds selectively affect specific targets
- E.g. enzyme inhibitions (drugs, insecticides); receptor interactions (e.g. Estrogens)
- Can be non-covalent as well as covalent
- Effects at very low concentrations

MoA(s) - toxicity mechanisms - overview

Student is expected to know <u>principles</u> and <u>some examples</u> of the following main types of toxicity mechanisms

- Membrane nonspecific toxicity (narcosis)
- Proteins and inhibition of enzymatic activities
- Ligand competitions receptor mediated toxicity
- **DNA** toxicity (genotoxicity)
- Complex mechanisms

 Oxidative stress redox toxicity

The molecular and cellular effects propagate → ORGANISM

WHAT (types of) "**ORGANISMS**" can be affected by ecotoxicants ?

WHAT (types of) "**ORGANISMS**" can be affected by ecotoxicants ?

- Structure = TAXONOMY
- Functioning = ECOPHYSIOLOGY

Ecotoxicity of glyphosate-based herbicide (GBH) to aquatic birds. Direct (continuous arrows) and indirect (dashed arrows) effects of GBH on birds.

Direct and Indirect effects of herbicides on birds

https://www.intechopen.com/books/biochemical-toxicology-heavy-metals-and-nanomaterials/ecotoxicology-of-glyphosate-based-herbicides-on-aquatic-environment

Antibiotic Resistance in Bacteria

Step 1

In a population of bacteria, one bacterium mutates and becomes antibiotic resistant.

Step 2

Antibiotic kills off all bacteria except for the antibiotic resistant bacterium.

Step 3

Antibiotic resistant bacterium multiplies, forming a population of antibiotic resistant bacteria.

Step 4

Antibiotic resistant bacteria can transfer their mutation to other bacteria.

WRAP UP = TAKE HOME MESSAGE

Ecotoxicology aims to understand effects of stressors (chemicals) in biological systems

- → Be aware of life (biological systems) in all types and dimensions
- → (Eco)toxicological effects are captured (organized) in Adverse Outcome Patways from Exposures to TK to MoA to "in vivo" (and beyond)
- → The 3 most important biological endpoints in vivo (apical endpoints) reflected in pragmatic approaches (biotesting) are …

