Alignment and mapping

Ing. Stanislav Smatana

The Main Goal

- Mapping is the essential step in **re-sequencing**
- This means we try to explore something with **known reference sequence**
- We can also construct the reference but let's keep this for another time
- In theory it is quite simple take a read, compare it with the reference and **find the correct place**

The main goal Reference sequence 330 - 430 bp unknown sequence 35 bp identified 35 bp identified

The Main Goal (SNP/SNV)

GCTGATGTGCCGCCTCACTTCGGTGGTGAGGTG	Reference sequence
CTGATGTGCCGCCTCACTTCGGTGGT	Short read 1
TGATGTGCCGCCTCACTACGGTGGTG	Short read 2
GATGTGCCGCCTCACTTCGGTGGTGA	Short read 3
GCTGATGTGCCGCCTCACTACGGTG	Short read 4
GCTGATGTGCCGCCTCACTACGGTG	Short read 5

It's a sequence alignment problem

For simplicity, let's first focus on single (non-paired) reads

We need to **align** reads from sequencing experiment to their corresponding place on reference genome sequence

Sequence Alignment

Global alignment

Sequence Alignment

Global alignment

Naive approach to local alignment

- Compare query to subject string at every position and calculate score
- Correct alignment is at position with the highest score

ACTCTCGAGCTAGCTATTCGATCTGAGTCGTGATC

Indels Complicate Things

Much more work !

Dealing with indels - global alignment

TGCTGTACTGTGCTGTACTGTATACCAT_A__TACCA

We want to align two sequences to the same length by inserting gaps in order to illuminate evolutionary relationship between them.

Graph representation of the problem

Needlman - Wunch algorithm

TGCTGTACTG T_A__TACCA

a

С

b

-d

		Т	G	С	Т	G	Т	A	С	Т	G
	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
Т	-1										
А	-2										
Т	-3										
А	-4										
С	-5										
С	-6										
А	-7										

d=max(a + match, b - gap, c - gap)

TGCTGTACTG T_A__TACCA

		Т	G	С	Т	G	Т	А	С	Т	G
	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
Т	-1	1									
А	-2										
Т	-3										
A	-4										
С	-5										
С	-6										
А	-7										

TGCTGTACTG T_A__TACCA

		Т	G	С	Т	G	Т	А	С	Т	G
	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
Т	-1	1	0								
А	-2										
Т	-3										
А	-4										
С	-5										
С	-6										
А	-7										

orithm

		Т	G	С	Т	G	Т	А	С	Т	G
	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
Т	-1	1	0	-1							
A	-2										
Т	-3										
A	-4										
С	-5										
С	-6										
А	-7										

TGCTGTACTG T_A__TACCA

		Т	G	С	Т	G	Т	A	С	Т	G
	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
Т	-1	1	0	-1	-2	-3	-4	-5	-6	-7	-8
А	-2	0	1	0	-1	-2	-3	-3	-4	-5	-6
Т	-3	-1	0	1	1	0	-1	-2	-3	-3	-4
А	-4	-2	-1	0	1	1	0	0	-1	-2	-3
С	-5	-3	-2	0	0	1	1	0	1	0	-1
С	-6	-4	-3	-1	0	0	1	1	1	1	0
А	-7	-5	-4	-2	-1	0	0	2	1	1	1

TGCTGTACTGNeedIman - Wunch algorithmT_A__TACCA

		Т	G	С	Т	G	Т	А	С	Т	G
	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
Т	-1	1	0	-1	-2	-3	-4	-5	-6	-7	-8
А	-2	0	1	0	-1	-2	-3	-3	-4	-5	-6
Т	-3	-1	0	1	1	0	-1	-2	-3	-3	-4
А	-4	-2	-1	0	1	1	0	0	-1	-2	-3
С	-5	-3	-2	0	0	1	1	0	1	0	-1
С	-6	-4	-3	-1	0	0	1	1	1	1	0
A	-7	-5	-4	-2	-1	0	0	2	1	1	1

Needlman - Wunch summary

Given scoring parameters, the algorithm guarantees to find all optimal alignments between the two sequences

TGCTGTACTG T_A__TACCA

Alignment score = 4x match - 3x gap Alignment score = 1

Local alignment with indels (Smith - Waterman)

- This can be solved by modification of Needlman Wunch algorithm
 - First row and first column of the matrix are initialized to zeros
 - Mismatch must have negative score (e.g. -1)
 - If score goes below zero, it is saturated to zero
 - Backtracking from all cells with maximum score
- This modification is called Smith Waterman algorithm
- This algorithm **is guaranteed** to find all occurrences of the shorter sequence in the longer sequence

We want to find occurences of shorter sequence in much longer sequence.

Tuning alignment - scoring matrices

- Proteins matrices
 - Blosum (empiric)
 - PAM (based more on theory)
- Nucleotides
 - Typically only match and mismatch score
- Gaps
 - Gap opening penalty
 - Gap extension penalty

You can create your own scoring matrix based on your domain knowledge !

Is raw score enough ?

We have aligned sequence X to the database Z and the alignment score is 42. Yay !

Is raw score enough ?

We have aligned sequence X to the database Z and the alignment score is 42. Yay !

Happy?

Karlin-Altschul alignment statistics (E-value)

Description	Common Name	Max Score		Query Cover		Per. Ident	Acc. Len	Accession
Calypogeia fissa voucher 16-8552 chloroplast, complete genome	<u>Calypogeia fissa</u>	448	897	100%	7e-122	100.00%	120500	NC_043787.1
Calypogeia fissa voucher 16-8552 chloroplast, complete genome	<u>Calypogeia fissa</u>	448	897	100%	7e-122	100.00%	120500	MH064514.1
Bazzania praerupta voucher 16-8506 chloroplast, complete genome	Bazzania praer	416	833	100%	2e-112	98.23%	120158	NC_043785.1
Bazzania praerupta voucher 16-8506 chloroplast, complete genome	Bazzania praer	416	833	100%	2e-112	98.23%	120158	MH064512.1

The problem with Smith - Waterman algorithm

Number of nucleotides	Time needed for computation
100	0.2 ms
1,000	0.02 s
10,000	2 s
100,000	3 m
1,000,000	5 h
10,000,000	23 days
100,000,000	6.5 years
1,000,000,000	650 years

Calculated by Ing. Tomáš Martínek, PhD. from BUT FIT. Single Xeon 3Ghz CPU.

Indexing - Making local alignment faster

Idea: Genome is first transformed from plain text into some different form that is more suitable for fast alignment.

Indexing - Making local alignment faster

Idea: Genome is first transformed from plain text into some different form that is more suitable for fast alignment.

Input sequence

ACTAG

Input sequence

ACTAG ACT

Genome

Input sequence

ACTAG ACT CTA

ACTAG ACT CTA TAG

Genome

Input sequence

ACTAG ACT CTA TAG

Genome

Genome

Our sequence will be somewhere in this region, we will use full Smith-Waterman only here !

Our sequence will be somewhere in this region, we will use full Smith-Waterman only here !

Fast, but what price do we pay for this ?

Indexing - suffix tree

Substring of a given string is a **prefix of one of its suffixes**.

Similar strategies: suffix array, Burrows-Wheeler transform

Indexing - how does it look in practice ?

Example using bowtie2 genome mapper:

1. Build index for reference genome

bowtie2-build my_reference.fasta my_index_name

2. Align reads using the index

bowtie2 -U my_reference.fasta -x my_index_name

Note: Some aligners do the index creation implicitly.

General Aligners vs Genome Aligners

General aligners

BLAST, HMMER, MMSeqs2, ...

- Typically used for search in large databases (e.g. NCBI nt)
- Do not make use of paired reads
- Do not make use of sequence quality information
- Intended for general search of sequences, not only short reads

NGS Aligners (mappers)

bowtie2, STAR, bwa, ...

- Used to align large number of short reads to genome
- Can take advantage of sequence quality information
- Can make use of paired reads
- Optimized for the task of short read mapping
- Produce output in standardized format (SAM/BAM)

General Aligners vs Genome Aligners

General aligners

BLAST, HMMER, MMSeqs2, ...

- Typically used for search in large databases (e.g. NCBI nt)
- Do not make use of paired reads
- Do not make use of sequence quality information
- Intended for general search of sequences, not only short reads

NGS Aligners (mappers)

bowtie2, STAR, bwa, ...

- Used to align large number of short reads to genome
- Can take advantage of sequence quality information
- Can make use of paired reads
- Optimized for the task of short read mapping
- Produce output in standardized format (SAM/BAM)

NGS Aligners - how can paired reads help

One of the biggest challenges for alignments to genome are repetitions.

NGS Aligners - how can paired reads help

One of the biggest challenges for alignments to genome are repetitions.

NGS aligners - repeat masking

Another way to deal with repeats is to mask them.

- Two ways how to mask repetitive elements
 - Soft-masking

ATCAATGATG**CCCAAA**TTACAGG**CCCAAA**TCACCG ATCAATGATG**CCCAAA**TTACAGG**CCCAAA**TCACCG

Hard-masking

ATCAATGATG**CCCAAA**TTACAGG**CCCAAA**TCACCG ATCAATGATG**NNNNNN**TTACAGG**NNNNNN**TCACCG

- Soft-masked treated differently by different aligners, hard-masked usually the same
- But don't mask sequences unless you have a specific reason to do so – you lose some relevant information!
- <u>http://seqanswers.com/forums/showthread.php?p=14</u>
 <u>8170</u>

General Aligners vs Genome Aligners

General aligners

BLAST, HMMER, MMSeqs2, ...

- Typically used for search in large databases (e.g. NCBI nt)
- Do not make use of paired reads
- Do not make use of sequence quality information
- Intended for general search of sequences, not only short reads

NGS Aligners (mappers)

bowtie2, STAR, bwa, ...

- Used to align large number of short reads to genome
- Can take advantage of sequence quality information
- Can make use of paired reads
- Optimized for the task of short read mapping
- Produce output in standardized format (SAM/BAM)

General Aligners vs Genome Aligners

General aligners

BLAST, HMMER, MMSeqs2, ...

- Typically used for search in large databases (e.g. NCBI nt)
- Do not make use of paired reads
- Do not make use of sequence quality information
- Intended for general search of sequences, not only short reads

NGS Aligners (mappers)

bowtie2, STAR, bwa, ...

- Used to align large number of short reads to genome
- Can take advantage of sequence quality information
- Can make use of paired reads
- Optimized for the task of short read mapping
- Produce output in standardized format (SAM/BAM)

NGS Aligners - standardized output (SAM/BAM)

• Header

@SQ	SN:chr1	LN:249250621
@SQ	SN: chr2	LN:243199373
@SQ	SN:chr3	LN:198022430
@SQ	SN: chr4	LN:191154276

• Body

seq.13906018 0 chr10 101948233255 101M * 0 0
GTCCACAGTCCTTTCTCTGAAACCCTTGGGNNAAGTTGTTTCAGAATTANGNAA
DHIIIIJJHIJJJJ#0#07 0L:A:F IH:i:1 HI:i:1

- One line per mapped read
- BAM = binary version of SAM (compression)

https://samtools.github.io/hts-specs/SAMv1.pdf

NGS Alignment - what can we use alignment for ?

- Whole genome sequencing we map reads onto reference to find variation
- **Exome sequencing** same as before, but only **exomic** DNA is captured. Saves a lot of money if you are only interested in genes.
- **ChIP-Seq/CLIP** sequencing of DNA regions where binding of proteins happens.
- **Transcriptome sequencing** sequencing of transcribed RNA in order to get expression profile of genes

NGS Alignment - what can we use alignment for ?

- Whole genome sequencing we map reads onto reference to find variation
- **Exome sequencing** same as before, but only **exomic** DNA is captured. Saves a lot of money if you are only interested in genes.
- ChIP-Seq/CLIP sequencing of DNA regions where binding of proteins happens.
- **Transcriptome sequencing** sequencing of **transcribed RNA** in order to get expression profile of genes

Transcriptome sequencing

Transcriptome sequencing - splicing

But how about Eukaryotes and their splicing ?

Transcriptome sequencing - splicing

- 1. Do not map reads onto a reference genome, but **reference transcriptome**. Reference transcriptome contains whole continuous transcribed sequences after splicing. No worries about introns.
- 2. Use **splice-aware** aligner

Use aligner which is designed for transcriptome alignment and takes splicing into account. Examples: bowtie2, STAR, BWA, HISAT2 ...

Never use **non splice-aware aligner** to map RNA-seq reads onto a reference genome ! (e.g. bowtie, BFAST, ...)

NGS aligners - summary

- Choose right aligner for the task at hand !
 - splice-aware vs non splice-aware
 - gapped vs non-gapped alignment
 - exact alignment vs fast approximate location (e.g. Kallisto)
- Aligners have often optimized default parameters for **specific reference**.
- Always read the manual.
- Never use settings without knowing what they are !
- Read the reviews !

http://bioinformatics.oxfordjournals.org/content/27/20/2790 http://www.ncbi.nlm.nih.gov/pubmed/24185836 http://www.biomedcentral.com/1471-2105/14/184 http://bib.oxfordjournals.org/content/11/5/473.full http://omictools.com/read-alignment-c83-p1.html

Reference sequences

- It can be
 - reference genome
 - reference transcriptome
 - just some collection of sequences
- Usually a FASTA file
- Usually one long sequence per chromosome
- Unassembled parts of the genome at the end
- Naming of records is important !

Reference sequences

- It can be
 - reference genome
 - reference transcriptome
 - just some collection of sequences
- Usually a FASTA file
- Usually one long sequence per chromosome
- Unassembled parts of the genome at the end
- Naming of records is important !

Reference sequences - naming

FASTA Format

>gi|254160123|ref|NC_012967.1| Escherichia coli B str. REL606

agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtgtc tgatagcagcttctgaactggttacctgccgtgagtaaattaaaattttattgacttagg

. . . .

- Using complex reference sequence names is a common problem during analysis
- Might rename to

>REL606

agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtgtc tgatagcagcttctgaactggttacctgccgtgagtaaattaaaattttattgacttagg

. . . .

Reference sequences - human genome

- One representative human genome reference sequence
 Derived from DNA of 13 volunteers from Buffalo, NY
- Maintained by the Genome Reference Consortium (GRC)
 - New versions are released periodically
 - Results from different versions are not compatible !
 - Releases are provided by UCSC and NCBI
 - Different sources use different chromosome identifiers (chr1 vs 1) !

Reference sequences - annotations

- Additional description of reference e.g. annotations of different regions on the reference
- **GTF** and **GFF** file format
- Names of chromosomes/sequences have to match the names in reference
- Different types of features
 - Manually verified genes
 - Predicted genes
 - Introns
 - o ...

Considerations

- How many mismatches to allow ?
 - Vary depending on biology or genome completeness
- How many matches to report ?
 - Are you interested in multiple matches ?
- Require best match, first/any match?
 - First match only is usually much faster.
- Quality of the reference sequence
 - How much can I trust my results ?

If the reference is bad no aligner can save me !

You have to think about these questions !