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Aim

* To connect the information on molecular abundancies or processes
from NGS with the conditions of the experiment

 Comparing the molecular patterns between two or more groups (class
comparison)

* Discover new groups based on the molecular patterns (class discovery)
Predict existing groups (class prediction)

* Analyze survival

Explore molecular events (pathway analysis...)



The count table...

* The count table is a quantitative representation of the abundance of
the sequence in the sample

* The problem of the count table is that the counts are incomparable
due to technical and biological reasons:

* we are unable to prepare libraries containing exactly the same amounts of
DNA for each sample

* Some features (genes) have longer target sequences than others, hence they
will have more reads assigned!



What to do? .... Normalize!

e Goal: compute a normalization factor for each sample, and adjust
the read counts using this factor

» After the adjustment, the read counts for different samples (and
different genes within sample) should be comparable

* Note that often, the normalization is not explicitly performed but
rather built into the existing analytical framework



Normalization approach I: total count

* Define a reference sample (either one of the observed samples or a
“pseudo-sample”) — this gives a “target” library size.

* The normalization factor for sample j is defined by

total count in sample j

total count in reference sample

* RPKM/FPKM is an extension of this normalization scheme, where we
also normalize for the length of the gene



RPKM/FPKM - outdated

* FPKM = Fragments Per Kilobase per Million mapped reads

e Similar to RPKM= Reads Per Kilobase per Million mapped reads
* Not (anymore) recommended for general use

* For some plots and statistics still OK

* Accounts for the different lengths of the features

* Comparable within the sample



Normalization approach Il: TMM

* Trimmed Mean of M-values

* M-values = log fold changes (compared to reference sample)
* A-values = average expression values

* Trim the genes with very small or very large M-or A-values

* Calculate the normalization factors based on a weighted M-value
from the remaining genes

* Assumption: most genes are not differentially expressed

* Incorporated in edgeR



Normalization approach Il: TMM



Normalization approach Ill: RLE/DESeaq

* Define the normalization factor for sample j as

counts for gene i in sample j

median; —
counts for gene i in reference sample

* Use a “pseudo-reference” sample with counts defined by the average
of the individual sample counts

* Incorporated in DESeq/DESeq2



Normalization approach IV: other summary
measures

* Other measures can be used instead of the sum of the counts
* Upper quartile
* Median
* Quantile normalization —adapted from microarrays



Comparison of normalization approaches

* Nice evaluation, but only one of many
http://www.ncbi.nlm.nih.gov/pubmed/22988256

Table 3: Summary of comparison results for the seven normalization methods under consideration

Method Distribution Intra-Variance Housekeeping Clustering False-positive rate
TC — + + - -

uQ ++ ++ + ++ -

Med ++ ++ - ++ -

DESeq ++ ++ ++ ++ ++

™M ++ ++ ++ ++ ++

Q ++ - + ++ —

RPKM — + + - -

A ‘-’ indicates that the method provided unsatisfactory results for the given criterion, while a‘+’and ‘++’ indicate satisfactory and very satisfac-
tory results for the given criterion.


http://www.ncbi.nlm.nih.gov/pubmed/22988256

Other approaches

* Spike-ins with known expression
* Very precise but more expensive
* Getting more and more common

e Use “housekeeping genes”
e Estimate normalization factor only from these

 How do we know that the housekeeping genesare actually stable? Very often
they are not!

* If we do this, we have to choose at least several (>5) "housekeeping" genes



Read count distribution —Negative Binomial
distribution (?)
* The NB distribution extends the Poisson distribution by allowing for

variability in the probability of a read mapping to a gene (A).

* This implies the possibility of over-dispersion (i.e., variance exceeding
the mean).

* The NB distribution has two parameters: the mean (p) and the
dispersion parameter ().

E[K]=n
var(K)=p+eu2



Negative Binomial distribution
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From the differential gene expression

* Model the read count for the /'thgene in the j'thsample by
Kii™~ NB(p;N;, @)

* Differential expression of a gene;is signified by differences in p;
between groups

* It is important to get dispersion estimates correct if we want to say
something about the significance of the differences



Estimating the dispersion

* Due to the small sample size, dispersion (and hence the variance)
estimation is difficult

e But we have a lot of genes!
* They should not behave completely differently

 Solution: combine information across the genes to estimate the
dispersion!

* BUT the estimates from real data suggest that the dispersion may not
be constant across genes



Adjusting the dispersion

e Stabilize the individual estimates by squeezing them towards
a common estimate or a trend (edgeR)

* Model the mean-dispersion (or meanvariance) relationship
(DESeq)

* Bayesian approach using a prior based on empirical values
(DESeq?2)



Dispersion estimation example —DESeq?2
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Compositional nature of the NGS data

B Genel mGene2 mGene3

* The gene(transcript) abundancies
(read counts) are constrained by i
the maximum number of DNA
reads that the sequencer can
provide (the total count constraint)

* Hence the data represents in fact a
proportion (composition) of
genes!

SAMPLE 1 SAMPLE 2 SAMPLE 3



The data is compositional —so what?

* The compositional nature of the data induces strong dependencies among the
abundances of the different taxa:

* anincrease in the abundance of one gene implies the decrease of the observed number
of counts — hence proportions - for other genes and vice versa

mGenel mGene2 mGene3 H Genel mGene2 mGene3

100

SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 1 SAMPLE 2 SAMPLE 3

Before treatment After treatment



The data is compositional —so what?

In a composition the value of each component is not informative by itself and
the relevant information is contained in the ratios between the components.



The data is compositional — so what? / part 2

 Compositional data do not exist in the Euclidean space, but in a special
constraint space called the simplex

100%
Actinobacteria

0%

0% T gk

Firmicutes 100, 100%  Bacterioides

* Hence it is incorrect to apply any multivariable techniques that are dependent
on this space without proper transformation of data (e.g. PCA, clustering....)



PCA on compositional data (without proper transformation)
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Statistical methods for analysis of compositional
data need to fulfill these criteria:

1. Scale Invariance (e.g. the result should be the same regardless of the scale of
the measurement)
* Example: how similar are these two samples?

_ % Absolute read counts

A B A B
Fusobacteria 10 11 700 11000
Proteobacteria 15 14 1050 14000
Bacterioides 25 20 1750 20000
Firmicutes 50 55 3500 55000
Euclidean 7.2 57088.6

distance



Statistical methods for analysis of compositional
data need to fulfill these criteria:

2. Subcompositional coherence (e.%% the analyses should lead to the same conclusions
regardless of which components of the data are included)

This is especially a problem for correlations between taxa, which tend to be more negative
when we remove some taxa and recalculate the proportions.

Correlations between genera

only components identified at genera level

all components at genera level



Statistical methods for analysis of compositional
data need to fulfill these criteria:

2. Subcompositional coherence (e.g. the analyses should lead to the same
conclusions regardless of which components of the data are included)

Alternative(s) to correlation:

Xg Xg xXg
VLR (xg,xh) = var (lng + lnx—}21 +...+ lnﬁ )
1. phi (@) = var(Ai -Aj)/var(Ai) _ Aitchison, 1982, J.R.Statist. Soc.
2. rho (p) = var(Ai -Aj)/(var(Ai) + var(Aj)) Lovell et al., 2015, PLoS Comp Biol
3. phis (Ds) = var(Ai _Aj)/var(Ai +Aj) Quinn et al, 2017, Scientific Reports 7

Ai is the log-transformed values for a metagenomic component ‘i’ in the data



Data transformation (normalization)

* Compositional data can be normalized in order to make them suitable for existing statistical

techniques

e Aitchinson, 1982 - build a theory and concepts of analysis of compositional data and suggested

normalizations

* Basic concept — make log-ratios between components

ALR (additive log-ratio transformation)

Tp_
alr(x) = |log j—; -+ -log ;)Dl

+ good for most statistical techniques
— needs careful selection of one
component, we are working with k-1
taxa, more difficult to interpret

CLR (centered log-ratio transformation)

L1 LD
... log

g(z) g9(z)

clr(z) = |log

+ ratio to geometric mean, preserves all
taxa, no need to select one
— creates singular covariance matrix

ILR (isometric log-ratio
transformation) [Egozcque, 2003]

PhILR (phylogenetic partitioning
based ILR transform) [Silverman
et al, 2017]
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The excess zero problem

* Log-ratio transformations require data with positive values, any statistical

analysis of count compositions must be preceded by a proper replacement of the
zeros

* We do not know whether the zeros are real or just below threshold

e What to do?

e E.g. Bayesian multiplicative treatment of count zeros [Martin-
Fernandez,2014,Statistical Modelling]

* Analysis and correction of compositional bias in sparse sequencing count data
[Kumar et al., BMC Genomics volume 19, Article number: 799 (2018) ]



https://bmcgenomics.biomedcentral.com/

Large number of genes —a lot of statistical
tests

* p-values are suitable tools for inference when a single hypothesis is
tested

* p-value = probability of obtaining a test statistic at least as extreme as

the one observed, if the null hypothesis is true (that is, without any
true signal in the data)

e But this means that even if the null hypothesis is true, there is a non-
zero probability of obtaining such an extreme test statistic

* If we perform many tests (even with true null hypotheses), we will
get extreme test statistics (and correspondingly low p-values) every
once in a while



NEUROSCIENCE PRIZE: Craig Bennett, Abigail Baird, Michael Miller, and George Wolford [USA], for
demonstrating that brain researchers, by using complicated instruments and simple statistics, can see
meaningful brain activity anywhere — even in a dead salmon.

IMPROBABLY, 7%

RESEARCH §i{p%

r-value

METHODS

Subject. One mature Atlantic Salmon (Salmo salar) participated in the fMRI study.
The salmon was approximately 18 inches long, weighed 3.8 Ibs, and was not alive at
the time of scanning.

Task. The task administered to the salmon involved completing an open-ended
mentalizing task. The salmon was shown a series of photographs depicting human
individuals in social situations with a specified emotional valence. The salmon was
asked to determine what emotion the individual in the photo must have been
experiencing.

Design. Stimuli were presented in a block design with each photo presented for 10
Craig M. Bennett, Abigail A. Baird, Michael B. Miller, seconds followed by 12 seconds of rest. A total of 15 photos were dlsplayed Total

and George L.Wolford, Journal of Serendipitous
and Unexpected Results, vol. |, no. 1,2010, pp. I-5 scan tlme was 5 5 mmutes




What’s the problem?

As the number of hypotheses increases, the probability of obtaining at
least one low p-value(e.g., <0.05) increases, too

nbr.tests probability

1 1 0.0500000
2 2 0.0975000
3 3 0.1426250
4 4 0.1854938
5 5 0.2262191
6 10 0.4012631
7 25 0.7226104
8 50 0.9230550
9 100 0.9940795
10 250 0.9999973
11 500 1.0000000



What can we do?

* The most common approach is to correct or adjust the observed p-
valuest o account for the multiple testing through correction of
family-wise error rate or false-discovery rate (FDR)

* Typically, multiply each p-value with a number > 1 to obtain adjusted
p-values

* Only if the adjusted p-value is small we call the result significant



Bonferonni correction

* Divide the alpha level by the number of tests

e e.g. 1000 tests and alpha=0.05 => adjusted alpha level is 0.00005!



Benjamini-Hochberg (FDR) correction

ldea: instead of focusing on the per-gene false positive probability, try
to control the fraction of false positives among the genes that are

considered significant.

* We can tolerate a few false positives if we simultaneously have a lot
of true positive findings.

» After FDR (e.g. Benjamini-Hochberg) adjustment:

* An adjusted p-value of (e.g.) 0.05 means that the smallest false discovery rate
that we can get if we want to consider the given gene as significant, is 5%.

* An adjusted p-value close to 1 means that we can not consider the
corresponding gene to be significant without accepting that almost all our

findings will be false.



Benjamini-Hochberg (FDR) correction

ldea: instead of focusing on the per-gene false positive probability, try
to control the fraction of false positives among the genes that are

considered significant.

* We can tolerate a few false positives if we simultaneously have a lot
of true positive findings.

» After FDR (e.g. Benjamini-Hochberg) adjustment:

* An adjusted p-value of (e.g.) 0.05 means that the smallest false discovery rate
that we can get if we want to consider the given gene as significant, is 5%.

* An adjusted p-value close to 1 means that we can not consider the
corresponding gene to be significant without accepting that almost all our

findings will be false.



DE calculation

Differential expression



Inputs to the calculation

Two main inputs

1. Table with raw or normalized gene counts — column per sample and
row per gene

2. Design table —assignment of groups/conditions to the samples

» Additional input -design/model matrix
* "Normal" comparison~condition

* "Paired” comparison ~patient+condition



edgeR

Implemented in R

eCount-based approach

e Assumes a NB distribution

*TMM normalizationby default (other alternatives available)

eEstimates dispersion by shrinking towards a common or trended
estimate

eAllows a large variety of experimental designs through the use of a
generalized linear model (GLM) framework



DESeq?

Implemented in R

* Count-based approach

* Assumes a NB distribution

* RLE normalization

* Estimates dispersion by a Bayesian approach

* Implements outlier detectionand independent filtering

* Allows a large variety of experimental designs through the use of a
generalized linear model (GLM) framework



edgeR — example

* Create a DGEList object from a count matrix and a

vector of class labels.
library (edgeR)
my.dgelist = DGEList (counts = count.matrix, group = groups)

* Calculate normalization factors
my.dgelist = calcNormFactors (my.dgelist)
head (my.dgelist$samples)

## group lib.size norm.factors
## SRX033480 C57BL/6J 167715 0.9875
## SRX033488 CS57BL/6J 353768 0.9762
## SRX033481 C57BL/6J 148133 0.9992
## SRX033489 C57BL/6J 369420 1.0019
## SRX033482 CS57BL/6J 168718 1.0120
## SRX033490 C57BL/6J 397475 1.0076



edgeR — example

* Estimate the common dispersion
my.dgelist = estimateCommonDisp (my.dgelist)
my.dgelist$common.disp

## [1] 0.03357

* Estimate the tagwise dispersions

my.dgelist = estimateTagwiseDisp (my.dgelist)




edgeR — example

* Apply the exact test to each gene

my.et

.results =

e Display the top-ranked genes

topTags (my.et.results)

##
##
##
##
##
##
##
##
##
##
##
##

Comparison of groups:

logFC logCPM
ENSMUSG00000005142 -0.6911 10.868
ENSMUSG00000000792 -0.9751 8.646
ENSMUSG00000001473 -1.3980 7.131
ENSMUSGO00000006154 -1.9795 6.926
ENSMUSG00000003477 -3.0288 4.575
ENSMUSG00000000402 -1.4727 6.447
ENSMUSG00000005681 -3.6775 4.102
ENSMUSG00000000958 -1.1181 6.701
ENSMUSG00000004341 -2.1121 5.004
ENSMUSGO00000003559 0.5835 9.182

BN SN WD I OW

exactTest (my.dgelist)

DBA/2J-C57BL/6J

PValue

.950e-23
.383e-17
.984e-15
.223e-14
. 132e-13
.472e-13
.190e-12
.562e-12
.190e-09
.811e-09

BN OO W OO = O N W

FDR

.950e-20
.691e-14
.946e-13
.806e-11
.465e-11
.786e-11
.129%e-10
.702e-10
.433e-07
.473e-07



DESeqg2 —example

* Create a DESegDataSet

library (DESeqg2)
ds <- DESegDataSetFromMatrix (countData = count.matrix,

colData =
data.frame (condition = factor(groups)),
design = ~condition)

* Perform the differential expression analysis

ds <- DESeg(ds, fitType = "parametric", test = "Wald",
betaPrior = TRUE)

* Get the results

DESeg2.results <- results(ds, independentFiltering = FALSE,
cooksCutoff = FALSE)




DESeq2 — example

* Order results by significance

DESeg2.results <- DESeqg2.results[order (DESeqg2.results$padj), ]
head (DESeg2.results)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

DataFrame with 6 rows and 6 columns

ENSMUSG00000005142
ENSMUSG00000000792
ENSMUSG00000001473
ENSMUSG00000006154
ENSMUSG00000000402
ENSMUSG00000000958

ENSMUSG00000005142
ENSMUSG00000000792
ENSMUSG00000001473
ENSMUSG00000006154
ENSMUSG00000000402
ENSMUSG00000000958

<numeric>

494,
104.
355
33
21.82
25.92
pvalue

80
54
23
03

<numeric>

BN e

.054e-40
.158e-18
.643e-16
.838e-14
.854e-12
.928e-12

baseMean log2FoldChange

<numeric>

padj

<numeric>

NN - OUWwo

.631le-38
.643e-16
.541e-14
.233e-11
.332e-10
.166e-10

.6752
2 FLXT
.2766
+ 6225
.2969
.0290

1fcSE

<numeric>

0

QOO O O

.05054
.10542
i I0
S R
.18409
.14897

<nume

stat
ric>
.359
.819
.189
.473
.045
.908




Other tools

 voom+limma

* baySeq

e Cuffdiff2 (+cummerbund)

* And many other R packages



Comparison of DE techniques

Replicate 1, 2 samples/condition

Replicate 1, 10 samples/condition
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