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Aim

• To connect the information on molecular abundancies or processes
from NGS with the conditions of the experiment

• Comparing the molecular patterns between two or more groups (class
comparison)
• Discover new groups based on the molecular patterns (class discovery)
• Predict existing groups (class prediction)
• Analyze survival
• Explore molecular events (pathway analysis…)



The count table…

• The count table is a quantitative representation of the abundance of
the sequence in the sample
• The problem of the count table is that the counts are incomparable

due to technical and biological reasons:
• we are unable to prepare libraries containing exactly the same amounts of

DNA for each sample
• Some features (genes) have longer target sequences than others, hence they

will have more reads assigned!



What to do? …. Normalize!

• Goal: compute a normalization factor for each sample, and adjust
the read counts using this factor
• After the adjustment, the read counts for different samples (and 

different genes within sample) should be comparable
• Note that often, the normalization is not explicitly performed but 

rather built into the existing analytical framework



Normalization approach I: total count

• Define a reference sample (either one of the observed samples or a 
“pseudo-sample”) – this gives a “target” library size.
• The normalization factor for sample j is defined by

• RPKM/FPKM is an extension of this normalization scheme, where we
also normalize for the length of the gene



RPKM/FPKM - outdated

• FPKM = Fragments Per Kilobase per Million mapped reads
• Similar to RPKM= Reads Per Kilobase per Million mapped reads
• Not (anymore) recommended for general use
• For some plots and statistics still OK
• Accounts for the different lengths of the features
• Comparable within the sample



Normalization approach II: TMM

• Trimmed Mean of M-values
• M-values = log fold changes (compared to reference sample)
• A-values = average expression values
• Trim the genes with very small or very large M-or A-values
• Calculate the normalization factors based on a weighted M-value

from the remaining genes
• Assumption: most genes are not differentially expressed
• Incorporated in edgeR



Normalization approach II: TMM

• …



Normalization approach III: RLE/DESeq

• Define the normalization factor for sample j as

• Use a “pseudo-reference” sample with counts defined by the average
of the individual sample counts
• Incorporated in DESeq/DESeq2



Normalization approach IV: other summary
measures
• Other measures can be used instead of the sum of the counts
• Upper quartile
• Median
• Quantile normalization –adapted from microarrays



Comparison of normalization approaches

• Nice evaluation, but only one of many 
http://www.ncbi.nlm.nih.gov/pubmed/22988256

http://www.ncbi.nlm.nih.gov/pubmed/22988256


Other approaches

• Spike-ins with known expression
• Very precise but more expensive
• Getting more and more common

• Use “housekeeping genes”
• Estimate normalization factor only from these
• How do we know that the housekeeping genesare actually stable? Very often

they are not!
• If we do this, we have to choose at least several (>5) "housekeeping" genes



Read count distribution –Negative Binomial
distribution (?)
• The NB distribution extends the Poisson distribution by allowing for

variability in the probability of a read mapping to a gene (λ).
• This implies the possibility of over-dispersion (i.e., variance exceeding

the mean).
• The NB distribution has two parameters: the mean (μ) and the

dispersion parameter (ϕ).
E[K]=μ

var(K)=μ+ϕμ2



Negative Binomial distribution



From the differential gene expression

• Model the read count for the i’thgene in the j’thsample by
Kij~ NB(pijNj, ϕij)

• Differential expression of a genei is signified by differences in pij
between groups
• It is important to get dispersion estimates correct if we want to say

something about the significance of the differences



Estimating the dispersion

• Due to the small sample size, dispersion (and hence the variance) 
estimation is difficult
• But we have a lot of genes!
• They should not behave completely differently
• Solution: combine information across the genes to estimate the

dispersion!
• BUT the estimates from real data suggest that the dispersion may not 

be constant across genes



Adjusting the dispersion

• Stabilize the individual estimates by squeezing them towards
a common estimate or a trend (edgeR)
•Model the mean-dispersion (or meanvariance) relationship

(DESeq)
• Bayesian approach using a prior based on empirical values

(DESeq2)



Dispersion estimation example –DESeq2



Compositional nature of the NGS data

• The gene(transcript) abundancies
(read counts) are constrained by 
the maximum number of DNA 
reads that the sequencer can
provide (the total count constraint)

• Hence the data represents in fact a 
proportion (composition) of
genes! 
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The data is compositional – so what?
• The compositional nature of the data induces strong dependencies among the

abundances of the different taxa:
• an increase in the abundance of one gene implies the decrease of the observed number

of counts – hence proportions - for other genes and vice versa

3000

500

14000

4000

200
24000

5000

100
300

SAMPLE 1 SAMPLE 2 SAMPLE 3

Gene1 Gene2 Gene3

3000

500

14000

4000
24000

100

300

SAMPLE 1 SAMPLE 2 SAMPLE 3

Gene1 Gene2 Gene3

Before treatment After treatment



The data is compositional – so what?

In a composition the value of each component is not informative by itself and 
the relevant information is contained in the ratios between the components.



The data is compositional – so what? / part 2
• Compositional data do not exist in the Euclidean space, but in a special

constraint space called the simplex

• Hence it is incorrect to apply any multivariable techniques that are dependent
on this space without proper transformation of data (e.g. PCA, clustering….)
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PCA on compositional data (without proper transformation)

individuals



Statistical methods for analysis of compositional
data need to fulfill these criteria:
1. Scale Invariance (e.g. the result should be the same regardless of the scale of

the measurement)
• Example: how similar are these two samples? 

% Absolute read counts

A B A B

Fusobacteria 10 11 700 11000

Proteobacteria 15 14 1050 14000

Bacterioides 25 20 1750 20000

Firmicutes 50 55 3500 55000

Euclidean
distance

7.2 57088.6



Statistical methods for analysis of compositional
data need to fulfill these criteria:
2.  Subcompositional coherence (e.g. the analyses should lead to the same conclusions
regardless of which components of the data are included)
This is especially a problem for correlations between taxa, which tend to be more negative 
when we remove some taxa and recalculate the proportions.



Statistical methods for analysis of compositional
data need to fulfill these criteria:
2.  Subcompositional coherence (e.g. the analyses should lead to the same
conclusions regardless of which components of the data are included)
Alternative(s) to correlation:

1. phi (Φ) = var(Ai -Aj)/var(Ai)
2. rho (⍴) = var(Ai -Aj)/(var(Ai) + var(Aj))
3. phis (Φs) = var(Ai -Aj)/var(Ai +Aj)

Ai is the log-transformed values for a metagenomic component ‘i’ in the data

Aitchison, 1982, J.R.Statist. Soc.
Lovell et al., 2015, PLoS Comp Biol
Quinn et al, 2017, Scientific Reports 7



Data transformation (normalization)
• Compositional data can be normalized in order to make them suitable for existing statistical

techniques

• Aitchinson, 1982 - build a theory and concepts of analysis of compositional data and suggested
normalizations

• Basic concept – make log-ratios between components

ALR (additive log-ratio transformation)

+ good for most statistical techniques
– needs careful selection of one
component, we are working with k-1 
taxa, more difficult to interpret

CLR (centered log-ratio transformation)

+ ratio to geometric mean, preserves all
taxa, no need to select one
– creates singular covariance matrix

ILR (isometric log-ratio 
transformation) [Egozcque, 2003]

PhILR (phylogenetic partitioning
based ILR transform) [Silverman
et al, 2017]



Compositional data - PCA before and after
normalization

PCA on absolute counts –
main variance lies in the

sequencing depth

Relative data – problem
with simplex, colour by 

individual

CLR transformed data –
colour by individual



The excess zero problem

• Log-ratio transformations require data with positive values, any statistical
analysis of count compositions must be preceded by a proper replacement of the
zeros
• We do not know whether the zeros are real or just below threshold

• What to do?
• E.g. Bayesian multiplicative treatment of count zeros [Martín-

Fernandez,2014,Statistical Modelling]
• Analysis and correction of compositional bias in sparse sequencing count data

[Kumar et al., BMC Genomics volume 19, Article number: 799 (2018) ]

https://bmcgenomics.biomedcentral.com/


Large number of genes –a lot of statistical
tests
• p-values are suitable tools for inference when a single hypothesis is

tested
• p-value = probability of obtaining a test statistic at least as extreme as 

the one observed, if the null hypothesis is true (that is, without any
true signal in the data)
• But this means that even if the null hypothesis is true, there is a non-

zero probability of obtaining such an extreme test statistic
• If we perform many tests (even with true null hypotheses), we will

get extreme test statistics (and correspondingly low p-values) every
once in a while





What’s the problem?
As the number of hypotheses increases, the probability of obtaining at
least one low p-value(e.g., <0.05) increases, too



What can we do?

• The most common approach is to correct or adjust the observed p-
valuest o account for the multiple testing through correction of
family-wise error rate or false-discovery rate (FDR)
• Typically, multiply each p-value with a number ≥ 1 to obtain adjusted
p-values
• Only if the adjusted p-value is small we call the result significant



Bonferonni correction

• Divide the alpha level by the number of tests

• e.g. 1000 tests and alpha=0.05 => adjusted alpha level is 0.00005!



Benjamini-Hochberg (FDR) correction

Idea: instead of focusing on the per-gene false positive probability, try
to control the fraction of false positives among the genes that are 
considered significant.
• We can tolerate a few false positives if we simultaneously have a lot 

of true positive findings.
• After FDR (e.g. Benjamini-Hochberg) adjustment:
• An adjusted p-value of (e.g.) 0.05 means that the smallest false discovery rate

that we can get if we want to consider the given gene as significant, is 5%.

• An adjusted p-value close to 1 means that we can not consider the
corresponding gene to be significant without accepting that almost all our
findings will be false.
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DE calculation

Differential expression



Inputs to the calculation

Two main inputs
1. Table with raw or normalized gene counts – column per sample and 
row per gene
2. Design table –assignment of groups/conditions to the samples

• Additional input -design/model matrix
• "Normal" comparison~condition
• "Paired" comparison ~patient+condition



edgeR

Implemented in R
•Count-based approach
•Assumes a NB distribution
•TMM normalizationby default (other alternatives available)
•Estimates dispersion by shrinking towards a common or trended
estimate
•Allows a large variety of experimental designs through the use of a 
generalized linear model (GLM) framework



DESeq2

Implemented in R
• Count-based approach
• Assumes a NB distribution
• RLE normalization
• Estimates dispersion by a Bayesian approach
• Implements outlier detectionand independent filtering
• Allows a large variety of experimental designs through the use of a 

generalized linear model (GLM) framework













Other tools

• voom+limma
•baySeq
•Cuffdiff2 (+cummerbund)
•And many other R packages




