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Overview of the methods (miRNA)

Tamet al., 2015, Briefings in Bioinformatics
https://doi.org/10.1093/bib/bbv019

Normalization method

Description

Accounted factors

Recommendations for use

CPM (counts per million)

Total count scaling

Upper quantile scaling

Trimmed mean of M
(edgeR)

DESeq2’s median of ratios

Linear regression

Cyclic loess (nonlinear
regression)

Quantile

counts scaled by total number of reads
the simplest form of normalization

after scalingeach sampleto its library size, they can be
rescaled to a common valueacross all samples

modified quantile-normalization method: the upper quartile of
expressed miRNAs is usedinstead as a linear scaling factor

calculates a linearscaling factor, di,for samplei,based on a
weighted mean after trimming the data by logfold-changes
(M) relativeto areference sampleand by absoluteintensity (A)

counts divided by sample-specific sizefactors determined by
median ratio of gene counts relativeto geometric mean per
gene

assumes thatthe systematic biasislinearly dependent on the
countabundance

non-scalingapproach, forces the distribution of read counts in
all samples across an experiment to be equivalent

sequencing depth

sequencing depth and RNA composition

sequencing depth

does not take into consideration the
potentially different RNA composition
across thesamples

sequencing depth and RNA composition

samples normalized to a baselinereference,
which was defined as the median count of
each element across the profiled samples

Baselinereferece

gene count comparisons between replicates of the same samplegroup;
NOT for within sample comparisons or DE analysis

This method has been shown to yield better concordancewith qPCR
results thanlinear total counts scaling for RNA-seq data

gene count comparisons between and within samples and for DE analysis

gene count comparisons between samples and for DE analysis; NOT for
within sample comparisons

assumes thatmost targets are not differentially expressed and thatthe
true expressiondistributionissimilaracrossallsamples




Comparison of data distribution w....
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1IaNCe COMPArISONS wneamoms
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Conclusion (MiRNA) w.e

* simply adjusting miRNA counts to the sequencing depth is inadequate

* the distinct number of miRNAs identified in replicate samples may differ because of the
random sampling nature of the technology; normalizing to the library size ignores this.

* total count scaling introduces more variability by pushing all samples toward the same
distribution

 UQ, TMM, DESeq, cyclic loess and quantile normalization are highly similar

e quantile and cyclic loess normalization may be too aggressive by forcing the distribution
of the samples to be the same

* increased variability was noted in the lower abundance miRNAs compared with UQ and
TMM normalized data

* Dillies et al. & Tam et al. support the use of TMM (and UQ) for the normalization of
miRNA count data

* Tam et al. - BWA with one mismatch across the entire read and UQ or TMM,
respectively, lead to more accurate results in downstream analyses



Transcriptome



Overview of the methods (transcriptomics)

Normalization method

Description

Accounted factors

Recommendations for use

CPM (counts permillion)

TPM (transcripts per kilobase million)

RPKM/FPKM (reads/fragments per
kilobase of exon per million
reads/fragments mapped)

DESeq2’s median of ratios

EdgeR’s trimmed mean of M values
(TMM)

countsscaled by total numberof reads
the simplestform of normalization

counts perlength of transcript (kb) per million
reads mapped

similarto TPM

counts divided by sample-specificsize factors
determined by median ratio of gene counts
relative to geometricmean pergene

usesa weighted trimmed mean of the log
expression ratios between samples

sequencing depth

sequencing depthand gene
length

sequencing depthand gene
length

sequencing depthand RNA
composition

sequencing depth, RNA
composition, and gene length

gene countcomparisons between replicates of the
same sample group; NOT for within sample
comparisons or DE analysis

gene countcomparisons withinasample or
between samples of the same samplegroup; NOT
for DE analysis

gene count comparisons between genes within a
sample; NOT for between sample comparisons or
DE analysis

gene countcomparisons between samples and for
DE analysis; NOT for within sample comparisons

gene countcomparisons between and within
samplesand for DE analysis




CPM, RPKM and TPM
—mmm

Gene A (1.5kb)
Gene B (2kb)

Sequencing depth ___

CPM (Counts Per Million)

For the example | am scalingby 10 instead of 1000000

50/12.5 =4
IR Y P
Gene A (1.5kb) 4 4.85
Gene B (2kb) 6 6.66 5.14

RPKM (Reads Per Kilobase Million)

Step 1: Normalizefor sequencing depth
For the examplelam scalingby 10instead of 1000000

50/12.5 = 4
—mmm

Gene A (1.5kb) 3.33 4.85
Gene B (2kb) 6 6.66 5.14

Step 2: Normalizefor gene length

Gene A (1.5kb) 2.66
Gene B (2kb)

Seq. depth ___

TPM (Transcripts Per Kilobase Million)

Step 1: Normalizefor gene length

Gene A (1.5kb) 33.33 16.66 56.66

Gene B (2kb) 37.5
il‘i"tﬁg rample1am Z‘f;‘.‘?ﬁ';i,';"ig?ﬁi?eadofloooooo 33-33/ 7.083
e g 1 [ sompie 2|

Gene A (1.5kb) 4.7 3.99 5.57

Gene B (2kb) 5.29 4.426

Seq. depth mmm



RPKM/FPKM (not recommended)

* the normalized count values output by the RPKM/FPKM method are
not comparable between samples

* the total number of RPKM/FPKM normalized counts for each sample
will be different. Therefore, you cannot compare the normalized
counts for each gene equally between samples.



DESeqg2-normalized counts: Median of ratios
method

e tools for differential expression analysis are comparing the counts
between sample groups for the same gene, gene length does not
need to be accounted for by the tool

e sequencing depth and RNA composition do need to be taken into
account



Median of ratios normalization

Step 1: creates a pseudo-referencesample
(row-wise geometric mean)
gene sampleA  sampleB pseudo-reference sample
EF2A 1489 906 sqrt(1489 * 906) = 1161.5

ABCD1 22 13 sqrt(22 * 13)=17.7

Step 2: calculates ratio of each sample to the
reference

do- . .
pseudo ratio of ratio of
gene sampleA  sampleB reference
sampleA/ref sampleB/ref
sample
1489/1161.5 = 906/1161.5=
EF2A 1489 906 11615 L o
1.28 0.78
ABCD1 22 13 16.9 22/16.9=1.30 13/16.9=0.77
MEFV 793 410 570.2 793/570.2=1.39 410/570.2=0.72
BAG1 76 42 56.5 76/56.5=1.35 42/56.5 = 0.74
521/883.7 = 1196/883.7 =
MOV10 521 1196 883.7 ! °

0.590 1.35

Step 3: calculate the normalization factor for each
sample (size factor)

The median value (column-wise for the above table)
of all ratios for a given sampleis taken as the
normalization factor (size factor) for that sample

Step 4: calculate the normalized count values using
the normalization factor

gene sampleA sampleB
EF2A 1489/1.3=1145.39 906/0.77 =1176.62
ABCD1 22/1.3=16.92 13/0.77 = 16.88



Quantile
normalization

Smooth
guantile
normalization

Conditional
guantile
normalization

A Quantile in a single class data

Order values within each Average across rows and Re-order averaged values

Raw data sample (or column) substitute value with average in original order
6 5 5 6|6
4 5 54| 5 .88 2.00 3.88 3.88 3.88 3.88 3.86‘ 3.8
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Compute a ratio for each Compute the weighted data by:
Split data by class and batch batch and split it out w * Qref + (1 - w) * Qhat

4.98/4.98 4.98 4.9

All raw data Split data by class

7 | 5 [HellE s|5‘75vewa
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Apply quantile normalization Apply quantile normalization Apply quantile normalization Apply quantile normalization
in weighted data and re-
order in original order

in each sub-data and
combine them together

in each sub-data and
combine them together

Apply quantile normalization in each sub-data and
in all raw data combine them together
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PC2 (1.35%)

Projection of samplesin 2D after PCA

RNAseq - expected counts (No normalization) RNAseq - Quantiles
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RNAseq.rsem.TPM.sel
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Comparison of different approaches

(sampling
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MetaTranscriptome



Microbiome



Sugnet Lubbe, Peter Filzmoser, Matthias Templ,

Comparison of zero replacement strategies for compositional data with large numbers of zeros. Chemometrics and
Intelligent Laboratory Systems, 202 1. https://doi.org/10.1016/j.chemolab.2021.104248

Overview of the methodsfor zero replacement

Normalization method

Description

Add constantvalue

Using uniform values between
0 and detectionlimit

Non-parametric multiplicative
simple imputation

Model-based multiplicative
lognormal imputation

BDLs (Below detection limit)

deeplmp

The simplest method is replacing all zeros with a constantvalue smallerthan the detection limit.
Martin-Fernandezetal. (2003) found that 65% of the detection limit minimizes the distortioninthe
covariance structure.

Using a constantvalue in the majority of cells leads to underestimation of the compositional variability.

Uniformvalues between Oand the detection limit (DL) is often used, setting the first parameterat
0.1*DL preventsimputed values from beingtoo close to zero.

did notwork if more than about half of the entriesin the compositional data matrix were zero

Thereplacementisdoneinaniterative manner, and forthat purpose the EM algorithm, Markov Chain
Monte Carlo (MCMC) or multipleimputation are utilized.

iterative model-based procedure which performs regressions to replace the zeros (e.g. ordinary
multiplelinearregression, robust regression, and partial least-squares (PLS) regression), procedure is
based on k-nearest-neighbourimputation

for a large number of zeros there are too few neighbours with non-zeros available, which makesthe
algorithm not applicable inthis context.

Imputation with deep learning methods, particularly using deep artificialneural networks in an EM-
based approach

0.65*detection limit=0.65*1

runif(0.1*DL, DL)

ZComposition packageinR

ZComposition packageinR

Deeplmp packageinR



https://doi.org/10.1016/j.chemolab.2021.104248
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Overview of the normalization methods

Normalization method Description

CLR — centered log-ratio divides each compositional part by the geometricmean of all parts
CLR removes the value-range restriction (which is good for some applications), but does
notremove the sum constraint

ILR — Isometriclog-ratio Instead of analyzing relative abundances, y; of D different OTUs, the ILR transform
produces D -1 coordinates, x*;(called “balances”)
Each balance corresponds to a single internal node of the tree and represents the
averaged difference inrelativeabundance between the taxainthe twosisterclades
descendingfromthatnode

ALR — Additivelog-ratio One componentis used as a baseline (reference), the proportion with the selected
referenceislogarithmized
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