Analysis of Sequencing Data

(Illumina NGS technology)

Marek Mráz

Assistant Professor of Oncology Group leader at CEITEC MU and Univ. Hospital Brno

9/2023 Analysis of Sequencing Data

Today.....

- DNA.....rules them all?
- PCR/Sanger
- DNA NGS....principlesRNA NGS... principles
 - Illumina platform
- NGS applications in general •
- Examples in cancer research

?

- Library
- Adaptor
- Index
- Barcode
- Read
- Flowcell
- Sequencing by synthesis
- T4 Ligase

Central Dogma

DNA Has Two Jobs

- It serves as a store of information
- It directs the synthesis of proteins

DNA – nucleus, mitochondria RNA – mRNA, rRNA, tRNA, snoRNA, miRNA, IncRNA

..... all RNAs can be converted to DNA....we always work/sequence DNA: DNA or cDNA

With genomic DNA we are interested in the sequencemutations, SNP, CNV, translocations

With RNA we are interested in other things..... Like?

DNA Sequencing

- You have 3 billion bases
- ~20,000(0) genes

Gene (DNA) gives rise to mRNA

PCR

PCR

- Mix DNA with dNTPs and primer
- Amplify...DNA polymerase

DNA has orientation, need of primer for PCR

Sanger seq

Sanger Sequencing

- Advantages
 - Long reads (~900bps)
 - Suitable for small projects
- Disadvantages
 - Low throughput
 - Expensive (cost per base)

Next Generation Sequencing

- Takes advantage of miniaturization to engage in massively parallel analysis
 - Essentially carrying out millions of sequencing reactions simultaneously in each of 10 million tiny wells/spots
- Sophisticated computer analysis of huge amounts of information allows "assembly" of a given sequence

Massive Parallel Seq workflow

4) Data processing & analysis

High Parallelism is Achieved in Polony Sequencing

Sanger

Polony

Two PCR primers are attached to the surface of flowcell. One of the primers has a cleavable site

Hybridize Fragment & Extend

Denature Double-Stranded DNA

Single-Stranded DNA

Bridge Amplification

Single-stranded molecule flips over and forms a bridge by hybridizing to adjacent, complementary primer

Bridge Amplification

Double-stranded bridge is formed

Denature Double-Stranded Bridge

Bridge Amplification

Single-stranded molecules flip over to hybridize to adjacent primers

Linearization

Reverse Strand Cleavage

Blocking

Read 1 Primer Hybridization

Sequencing by synthesis

Sequencing by Synthesis - Fluorescently labeled Nucleotides (Illumina)

Complementary strand elongation: DNA Polymerase

Sequencing with Paired Ends

Paired End Sequencing

Paired End Sequencing

Paired End Sequencing

Paired End Sequencing

Paired End Sequencing

Sequencing with Paired Ends

Sequencing Paired End Libraries with Dual Index Read

Dual Index Sequencing Utilizes 4 Sequencing Reads

video

https://www.youtube.com/watch?v=womKfikWlxM

RNA Seq

RNAseq

The general experimental procedure for RNA

Transcriptom = sum of all RNA (mRNA, rRNA, tRNA and noncoding RNA)

TruSeq RNA v2 Sample Prep Workflow

The general experimental procedure for miRNA

Library preparation

Strict QC of starting material

- appropriate quantification
- gel images, bioanalyzer traces
- which carrier was used salmon sperm DNA, yeast RNA ☺, linear acrylamide ☺
- How to get rid of rRNA...

50

45

35

40

20

25

30

55

60

65 [s]

Library preparation

- Fragmentation: Covaris, enzymes, for RNA ions+heat
- Size selection: gel vs beads

Covaris

Library preparation

How do SPRI beads work?

- <u>Solid</u> <u>Phase</u> <u>Reversible</u> <u>Immobilisation</u> beads
- Polysterene core covered with magnetite
- Outer polymere coating
- Only magnetic in a magnetic field → Paramagnetic

Depending on how much SPB are added, the DNA of interest might be bound to the beads • or found in the cleared supernatant

E-gel

GAPDH

No DNase

APPLICATIONS: NGS is good for many things

Simon 2013

Applications

- De novo genome assembly
- Genome re-sequencing :
- SNV = single nucleotide variants (mutation/SNP)
- CNV = copy number variation (insertion/deletion)
- structural aberation (translocation/inversion)
- **RNA-Seq** (gene expression, exon-intron structure, small RNA profiling, and mutation)
- CHIP-Seq (protein-DNA interaction)
- Epigenetic profiling

Whole Genome Sequencing

•You sequence all of that – including the "junk"

- De novo asembly using the overlap of the reads to assemble a genome – needs a good coverage
- **2. Re-sequencing** mapping to your reference genome ...you need to have one

WES = whole exome sequencing

- You sequence only the coding regions of genes...exons (approx. 2 % of the genome)
- Effective and cheap
- Probably the most widely used

Targeted sequencing

- You already know the exact gene
- And you want to screen
- You are typically looking for a causative mutation that you know in advance can be there
- Cheap and fast.... Good for detection of small clones using high coverage (but polymerase makes mistakes)

RNA sequencing

- Detection of expression levels...counting reads that map
- Somatic mutations (of expressed genes)
- Gene fusions
- Alternative splicing
- ncRNA...a whole new universe

Alternative Splicing Generates Distinct Proteins in Different Tissues

Discovering noncoding RNAs

- ncRNA presence in genome difficult to predict by computational methods with high certainty because the evolutionary diversity
- Most have unknown function

Zeni and Mraz,. 2020

Elucidating DNA-protein interactions through chromatin immunoprecipitation sequencing

- Key part in regulating gene expression
- Chip: technique to study DNAprotein interaccions
- Readout of ChIP-derived DNA sequences onto NGS platforms
- Insights into transcription factor/histone binding sites in the human genome

Epigenomic variation

• Enable of genome-wide patterns of methylation and how this patterns change through the course of an organism's development/cancer etc.

Bisulfit conversion + NGS:

- conversion C → U, Met-C not changes
- Identification of methylated bases

Metagenomics

 Examples: ocean, acid mine site, soil, coral reefs, human microbiome which may vary according to the health status of the individual

THE METAGENOMICS PROCESS **DETERMINE WHAT THE GENES ARE** (Sequence-based metagenomics) Identify genes and metabolic pathways Compare to other communities and more... **Extract all DNA from** microbial community in sampled environment **DETERMINE WHAT THE GENES DO** (Function-based metagenomics) Screen to identify functions of interest, such as vitamin or antibiotic production Find the genes that code for functions of interest

and more...

 National Cancer Institute (NCI):- The Cancer Genom Atlas (TCGA)

 International Cancer Genome Consortium (ICGC): Cancer GenomeProject – genome, transcriptom and epigenom in 50 most common tumors

International Cancer Genome Consortium

Examples of NGS applications in Oncology

- Molecular diagnostics...mutations: known, novel and subclonal
- **RNA seq:** new fusion genes
 - Fusion EML4- ALK in lung cancer
 - translocation TMPRSS2- ERG in prostate cancer(Dong 2012)
 - microRNA expression, gene patterns

• Identification of germinal mutations (WES):

- Familiar pancreas cancer(PALB2)
- Feochromocytoma inherited (MAX)
- Familiar melanom (MITF)
-screening of large cohorts/families

Targeted sequencing

- BRCA1 mutations associated with breast and ovarian cancer (difficult to detect by sanger) (Walsh 2010)
-good for huge genes

Hematooncology

 First genome of a cancer patient (WGS, 2008): normal cells vs AML cell → 8 new somatic mutations (Ley, Nature 2008)

Identification of novel recurrently mutated genes by WES....

Wang 2011

clonal evolution in cancer : AML (WGS)

Subclonal architecture of your tumor

.... Including new therapeutic targets

Thank you for your attention

In summary: there is a whole new universe in front of you.... A one that nobody has ever seen

New technologies: <u>https://nanoporetech.com/how-it-works</u>

Marek Mraz

CEITEC and University Hospital Brno marek.mraz@email.cz