
1 Natural units

Almost all units in nature are derived. For instance, in the cgs system of
units one chooses the unit of length to be cm, the unit of mass to be g and
the unit of time to be s. All other units can be expressed in terms of these
three. For instance, the unit of force can be found from Newton’s law to
be ML

T 2 where M, L and T represent the particular units chosen for mass,
length and time respectively. Similarly, the unit of charge can be found from

Coulomb’s law to be M
1
2 L

3
2

T
. We see that sometimes odd-looking fractional

powers appear which is probably one reason why people have invented new
names for these units. Anyway, the choice of units which are regarded as
fundamental is by no means unique. For instance, instead of choosing M, L
and T , we can choose as fundamental, the unit of energy E, the unit of
velocity V and the unit of “action” A. The last unit is somewhat unusual.
It is the unit that the action functional in mechanics or quantum mechanics
carries. Since the action is

∫
dt (K − V ) we see that the unit is energy·time,

the same as the constant h̄ carries. (It would also be possible to view A as
the unit of angular momentum.) If we choose the units for velocity such that
the speed of light, c = 1 and the unit of action such that h̄ = 1, then we have
something that is called “natural units”. It only remains to choose a unit for
energy, which we usually will choose to be eV . (1eV = 1.602 · 10−19J.)

To be able to convert between these two systems of units, we express the
new units in terms of the old ones. It is not difficult to find that





V = L
T

E = ML2

T 2

A = ML2

T

or





M = E
V 2

T = A
E

L = AV
E

(1)

Using these relations we can make a small table

Quantity CGS Natural

Force ML
T 2

E2

AV

Charge M
1
2 L

3
2

T
(AV )

1
2

Magnetic moment M
1
2 L

5
2

T
(AV )

3
2

E

From the table we see that for instance charge is dimensionless in natural
units (it is given in eV 0). Force has dimensions eV 2 while length, time and
magnetic moment all have the same dimension eV −1. If you are given a
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number in natural units and you want to change it into CGS units you just
have to insert the proper powers of h̄ and c to restore the dimensions. Here
is an example: the charge of the electron in natural units is

en = 8.543 · 10−2 eV 0 (2)

Converting this to CGS we have to consult the table to see that we need to
multiply this with

√
h̄c to restore the dimensions. Note here that the units

you choose for h̄ and c will also give you the units of the final result. Since
we are interested in CGS units we have to give h̄ and c in cm, g and s instead
of the more usual m, kg and s. For reference I give them here

h̄ = 1.05459 · 10−27 g cm2

s

c = 2.9979 · 1010 cm

s
(3)

Multiplying together gives

ecgs = en

√
h̄c = 4.803 · 10−10 esu = 3.336 · 10−10 C. (4)

Another example is the expression for the Bohr radius in natural units

(a0)n =
1

mne2
n

eV −1 (5)

To transform this to an expression of dimension length we multiply with h̄c
to get

(a0)cgs =
h̄c

mne2
n

(6)

The formula still depends on the values of e and m in natural units though.
We can convert these also by using the relation between the charges derived
above and the relation between the masses as mn = mcgsc

2. This gives

(a0)cgs =
h̄2c2

mcgsc2e2
cgs

=
h̄2

mcgse2
cgs

(7)

Comment 1: The definition and even the unit of charge differs between
different systems of units. This comes about because there are different
conventions about how to write Coulomb’s law. We have

ecgs =
ehl√
4π

=
eSI√
4πε0

(8)
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ehl represents the charge in the Heaviside-Lorentz system of units. It clearly
has the same dimension as the CGS charge. However, in the SI system
there is an additional constant ε0 which has the dimension of inverse velocity
squared. Charge in the SI system therefore has a different dimension than in
CGS.

Comment 2: There exist other systems of units with only one basic unit.
For instance, in relativistic gravitational physics it is often advantageous
to choose a system of units where the speed of light c = 1 and Newton’s
gravitational constant G = 1. The remaining unit is the unit of length which
can be chosen arbitrarily (light-year, m, cm etc.). This system of units is
called geometrical units. In this system, for example, the mass of the earth
is approximately 0.44 cm.

2 The Dirac equation

There is a curious way to “derive” the Schrödinger equation. Namely, take
the relation for the energy in classical physics

E =
p2

2m
+ V. (9)

One gets the Schrödinger equation by making the replacement

E → ih̄
∂

∂t
,

pi → −ih̄
∂

∂xi
, (10)

and then letting the relation (9) “act” on a wavefunction one gets

ih̄
∂

∂t
ψ =

(
− h̄2

2m
∂2

x + V

)
ψ. (11)

This derivation inspired many people to try to derive a relativistic analog
of the Schrödinger equation by starting with the relativistic energy relation
E2 = p2c2 +m2c4 (or E2 = p2 +m2 in natural units) instead of starting with
(9). Making the same substitution (10) as before we get a relativistic wave
equation

−∂2
t φ = −

(
∂2

x + ∂2
y + ∂2

z

)
φ + m2φ. (12)
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This can be written in a more relativistic fashion by introducing a metric
gµν = diag(1,−1,−1,−1) as

gµν∂µ∂νφ + m2φ = 0, (13)

an equation which is known as the Klein-Gordon equation.
To find out more about its properties, we now go on to find solutions to

the Klein-Gordon equation. For instance, there is a complete set of plane-
wave solutions as we will now show. First we make the ansatz φ = e−ikµxµ

.
Acting on this with a four-derivative ∂µ gives us

∂µe
−ikνxν

= −ikµe
−ikνxν

. (14)

Using this result twice we may insert the ansatz into the Klein-Gordon equa-
tion to get

∂µ∂
µφ + m2φ = (−kµk

µ + m2)φ. (15)

We see that for φ to be a solution to the Klein-Gordon equation we need the
four momentum kµ to satisfy the relation

kµk
µ = m2, (16)

and rewriting the four momentum kµ in terms of its components kµ = (E,k)
where k is the ordinary three momentum, we recover the relativistic energy
relation E2 = k2 +m2. Let us recapitulate; the Klein-Gordon equation has a
complete set of plane wave solutions φ(x) = eik·x where the four momentum
has to satisfy the relativistic energy condition k · k = m2. Any solution
can then be written as a linear combination of these plane waves. There is
however a funny new feature of these solutions. If the four vector kµ = (E,k)
gives a solution, then the four vector kµ = (−E,k) with negative energy is
also a solution! Thus, for every solution with positive energy, there is a
solution with negative energy which seems physically unacceptable since it
would lead to an unstable theory (there would be no state with lowest energy
= vacuum state).

Dirac identified the root of this problem in the fact that the Klein-Gordon
equation is quadratic in the time derivative whereas the Schrödinger equation
is linear. He tried to get around this by introducing an equation which
would be linear in time derivatives. To achieve this he used some interesting
properties of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (17)
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which fulfill the relation σiσk = iεiklσl +δik1. This made it possible for Dirac
to write

kµk
µ = E2 − kiki =

(
E1− kiσi

) (
E1 + klσl

)
. (18)

That is, by writing the equation in terms of two by two matrices, he was able
to split it into factors linear in energy. The price he had to pay was that
the wave functions now become two dimension column vectors (or spinors as
they are more commonly known). Thus our second attempt for a relativistic
wave equation looks like this

(
1i∂t − σii∂i

) (
1i∂t + σli∂l

)
φA = m2φA, (19)

where φA =

(
φ1

φ2

)
is a two dimensional column vector. By introducing a

second two dimensional column vector

mφB =
(
1i∂t + σli∂l

)
φA, (20)

we can write an equation (well, really a system of equations) which is linear
in time derivatives

mφB =
(
1i∂t + σli∂l

)
φA,

mφA =
(
1i∂t − σii∂i

)
φB. (21)

For purely conventional reasons one often redefines the column vectors as
φ± = φA ± φB which makes it possible to write the above equation as

mφ+ = 1i∂tφ+ + σli∂lφ−
mφ− = −1i∂tφ− − σli∂lφ+, (22)

or, defining a four component column vector ψ =

(
φ+

φ−

)
and four by four

matrices

γ0 =

(
1 0
0 −1

)
; γi =

(
0 σi

−σi 0

)
, (23)

we may write the resulting equations in a very compact form as

γµi∂µψ = mψ. (24)
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Notice that this is a matrix equation (it is really four equations written in
a very nice and compact form using matrices) and that it is linear in time
derivatives which is exactly what Dirac wanted to achieve. This equation
is known as the Dirac equation. To make the comparison to the ordinary
Schrödinger equation more prominent, we can rewrite it as

γ0i∂tψ = −γli∂lψ + mψ, (25)

and using that γ0γ0 = 1 we find

i∂tψ = −γ0γli∂lψ + mγ0ψ. (26)

We thus see that the Hamiltonian operator that we get from the Dirac equa-
tion is H = −γ0γli∂l + mγ0.

Again, to get a feeling for the physics we can try to solve the equation.
Since the wavefunction is a four component column vector we make the ansatz
for a plane wave

ψ = u(p)e−ip·x, (27)

where u(p) is a four component column vector possibly dependent on p.
Inserting this into the Dirac equation we get

(iγµ∂µ −m)ψ = (γµpµ −m)u(p)e−ip·x, (28)

so we see that for this to be a solution of the Dirac equation we need the
four column vector u to satisfy the matrix equation

(γµpµ −m)u(p) = 0. (29)

Using the expressions for the gamma matrices found earlier we can rewrite
this in an even more explicit form




E −m 0 −p3 −p−
0 E −m −p+ p3

p3 p− −E −m 0
p+ −p3 0 −E −m







u1

u2

u3

u4


 = 0, (30)

where we have defined the complex combinations p± = p1±ip2. This equation
has four independent solutions. We will find one of them, but I recommend
that you similarly try to find the other three. Actually, for this equation to
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be solvable we need the determinant of the matrix to be zero. We can easily
evaluate it to be (E2 − p2 − m2)2 so we see that a necessary condition for
this equation to have solutions is that the “old” relativistic energy condition
is satisfied. Unfortunately this means that we did not get rid of the solutions
with negative energy. Therefore we first need to assume that the condition
holds, then we can go on and try to find a solution. To make it a little bit
simpler, let us first try it in the case where p = 0. Then the equation looks
like




0 0 0 0
0 0 0 0
0 0 −2m 0
0 0 0 −2m







u1

u2

u3

u4


 = 0, (31)

for the case of positive energy, i.e. when E = +m and in the case where the
energy is negative, i.e. when E = −m, it looks like




−2m 0 0 0
0 −2m 0 0
0 0 0 0
0 0 0 0







u1

u2

u3

u4


 = 0. (32)

In the positive energy case we have the two independent solutions




1
0
0
0


 ,




0
1
0
0


 , (33)

and in the negative energy case the solutions look like




0
0
1
0


 ,




0
0
0
1


 . (34)

Turning on the three momentum p we have to solve the full equations (30)
but we can expect that the solutions should not differ too much from the
zero p solutions, at least when p is small. Then we should be able to find a
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solution of the form



1
0
a
b


 , (35)

where a and b are small of order p (or possibly smaller). Inserting this
ansatz into the equation immediately gives us that a = p3

E+m
and b = p+

E+m
.

For reasons to be explained later we choose the normalization to be u†u = 2E
which leads to the final answer

ψ =
√

E + m




1
0
p3

E+m
p+

E+m




e−ip·x. (36)

3 The non-relativistic limit of the Dirac equa-

tion

One check that one should always do is to see how the new physics one is
investigating reduces in known situations. In the case at hand this means
that we should try to see how the physics of the Dirac equation looks in a
non-relativistic situation. To do this, let us have a look at it in the form
given in (22) but in momentum space. The equation looks like

(E −m)φ+ = σlplφ−,

(E + m)φ− = σlplφ+. (37)

The non-relativistic limit means the limit where p ¿ m. This in turn implies
that E =

√
p2 + m2 = m + p2

2m
+ . . . = m + E(NR) where E(NR) is the non-

relativistic energy. This immediately tells us that the quantity E(NR) = E−m

is small (of order m
(

p
m

)2
or v2

c2
mc2 in ordinary units) while the quantity E+m

is large (of order m). A look at the equations now tells us that φ+ is of order
one while φ− is of order p

m
so it goes to zero in the non-relativistic limit. We

can now solve for the “small” component φ− to get an equation for φ+ only
since φ+ is what is left in the non-relativistic limit. Solving for φ− gives us

φ− =
1

2m + E(NR)
p · σφ+, (38)
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which, when inserted back into the equation gives us

E(NR)φ+ = p · σ 1

2m + E(NR)
p · σφ+. (39)

In the non-relativistic limit m À E(NR) so we can expand the denominator
to get

E(NR)φ+ = p · σ 1

2m
(1− E(NR)

2m
+ . . .)p · σφ+, (40)

and to lowest order we get back the non-relativistic Schrödinger equation

E(NR)φ+ =
p2

2m
φ+. (41)

This is maybe not a very exciting result but it is gratifying to see that we
get the correct non-relativistic limit of our equation.

A slightly more interesting result we get if we include a potential from
an external electromagnetic field. This is done in a relativistically covariant
fashion in the Dirac equation, introducing the relativistic electromagnetic
vector potential Aµ = (ϕ,A), by replacing i∂µ → i∂µ − eAµ. This changes
the Dirac equation to

γµ (i∂µ − eAµ) ψ = mψ, (42)

or, if we Fourier transform as

γµ (pµ − eAµ) u(p) = mu(p). (43)

When rewriting this in terms of the large and small components we get

(E − eϕ−m)u+ = σ · (p− eA)u−,

(E − eϕ + m)u− = σ · (p− eA)u+, (44)

and solving for the small component we get

u− =
1

2m + E(NR) − eϕ
σ · (p− eA)u+,

E(NR)u+|! =

(
eϕ + σ · (p− eA)

1

2m + E(NR) − eϕ
σ · (p− eA)

)
u+.(45)
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Notice that we have to be careful in which order we write things since ϕ
and A depend on x and thus do not commute with p. Using the same
approximations as before we get an equation for u+

E(NR)u+ =
(
eϕ +

1

2m
σ · (p− eA)σ · (p− eA)

)
u+. (46)

To evaluate this we again need to use the properties of the Pauli matrices to
be able to write

σ · (p− eA)σ · (p− eA) = σiσk(p− eA)i(p− eA)k =

(δik + iεiklσl)(p− eA)i(p− eA)k = (47)

(p− eA) · (p− eA) + iσ · (p− eA)× (p− eA).

The cross product can be evaluated as

εlik(p− eA)i(p− eA)k =
1

2
εlik [(p− eA)i, (p− eA)k] =

1

2
εlik (−e [pi,Ak]− e [Ai,pk]) = −εlike [pi,Ak] = (48)

ieεlik∂iAk = ieBl, (49)

which gives us the non-relativistic equation (Pauli equation)

E(NR)u+ =

(
(p− eA)2

2m
+ eϕ− e

2m
σ ·B

)
u+. (50)

This is exactly the Schrödinger equation for a non-relativistic spin half par-
ticle with an intrinsic magnetic moment µ = e

m
s where s = σ

2
is the spin

operator. This is a very interesting result. We see that only from the re-
quirement that the theory should be relativistically invariant, we find that
particles carry an intrinsic magnetic moment. This is not something that
we can turn off or change in any way. It is fundamentally built into the
theory and comes from the relativistic invariance. Furthermore, it cannot
be understood in any classical sense as “something charged going around
in circles”. In fact, you can easily verify by yourself that if we have some
charged particle moving in a circle of radius R it produces a magnetic mo-
ment which is µ = e

2m
L and what we get out of our equation is twice this

value. We say that the electron has a gyromagnetic ratio of 2. In fact this is
not completely true and this value receives quantum corrections which can
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be computed with great accuracy (moreover, you will in principle be able to
do it yourself using what you learn in this course).

One can go on and keep higher order corrections to this result. This will
result in extra terms in the Hamiltonian. The calculation is slightly more
involved since now it will not be justified to neglect φ− any more. Anyway, it
is still possible to write a non-relativistic Hamiltonian for a two component
spinor. If one puts A = 0 (no magnetic field) the Schrödinger equation
becomes

(
p2

2m
+ eϕ− p4

8m3
− eσ · (E× p)

4m2
− e

8m2
∇ · E

)
ψ = E(NR)ψ. (51)

The first two terms are the lowest order terms which we have already derived
(remember that we put A = 0). The next three terms are higher order cor-
rections. If we for instance apply this Hamiltonian to the hydrogen atom they
will give small corrections to the spectrum (known as fine structure). The
third term is simply the first non-trivial correction to the non-relativistic en-
ergy (from expanding

√
p2 + m2−m). The fourth term is called the Thomas

term and it has the interpretation as an interaction between the spin of the
electron and the effective magnetic field it sees when moving through the
electric field. It can be rewritten as a spin-orbit interaction (proportional to
S · L). The last term is known as the Darwin term. It represents an interac-
tion with the charge density that produces the electric field. In the hydrogen
atom it gives a shift in energy of the s-states. There is also something called
hyperfine structure of the hydrogen spectrum. It comes from the interaction
of the magnetic moments of the proton and the electron but is a much smaller
effect than is the fine structure.

I would like to point out once again that all these terms one gets auto-
matically from the Dirac equation when going to the non-relativistic limit.
There are no additional assumptions involved. Quite a nice little equation!

4 Transformation properties of the Dirac equa-

tion

You are familiar with how covariant and contravariant vectors transform
when we change coordinate systems (we also say “when we do Lorentz ro-
tations” or “boost” the coordinate system) in special relativity. The typical
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contravariant vector is the coordinate vector xµ itself. When we do a Lorentz
boost it transforms into x′µ = Λµ

νx
ν where, if we for instance boost to a co-

ordinate system which is moving with speed v in the x direction we have

Λµ
ν =




1√
1−v2 − v√

1−v2 0 0

− v√
1−v2

1√
1−v2 0 0

0 0 1 0
0 0 0 1




(52)

We may define the matrix Λ ν
µ = gµρΛ

ρ
σg

σν and we can check that Λρ
µΛ ν

ρ =
δν
µ. All covariant quantities (for example the momentum vector pµ or a

vector field Aµ or the ordinary derivative operator ∂µ transform as A′
µ =

Λ ν
µ Aν . Therefore the scalar product is invariant x′µp′µ = xµpµ. Using this

information it is easy to see that for a scalar field φ (a scalar field is defined by
the property that it does not transform at all under Lorentz transformations)
the Klein-Gordon equation is invariant under Lorentz transformations

∂µ∂
µφ + m2φ = 0 (53)

A spinor is not invariant under Lorentz transformations but transforms
as ψ′a = Sabψb for some matrix S which we will not need the exact form of.
The Dirac equation itself transforms as

i/∂ψ −mψ = 0 → iγµΛ σ
µ ∂σ (Sψ)−mSψ = 0 (54)

or

iS−1γµSΛ σ
µ ∂σψ −mψ = 0 (55)

We see that for the Dirac equation to be invariant we need that

S−1γµS = Λµ
σγ

σ (56)

Taking the hermitian conjugate of this equation and using that we know from
the explicit representation of the gamma matrices that (γµ)† = γ0γµγ0 we
get

γ0S†γ0 = S−1 (57)

Having this formula we may investigate how for instance ψ† transforms under
Lorentz transformations. We get

ψ′† = ψ†γ0S−1γ0 (58)
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So the hermitian conjugate does not transform as the inverse of the original
object. However, if we check how ψ̄ ≡ ψ†γ0 transforms we find

ψ̄′ = ψ̄S−1 (59)

which is indeed “nicer” since we can form objects with simple Lorentz trans-
formation properties from it, for instance

ψ̄′ψ′ = ψ̄ψ (scalar)

ψ̄′γµψ′ = ψ̄S−1γµSψ = Λµ
νψ̄γνψ (vector) (60)

5 Field quantization (“second quantization”)

To be able to describe quantum systems where the number of particles is able
to change (for instance, an electron and a positron annihilates into two pho-
tons) we use a formalism called “second quantization”. Notice that the name
second quantization is rather badly chosen since it is not a question about
“quantizing again”. It is simply yet an alternative formalism for describing
the states we have in the quantum world. It is not only used in relativistic
quantum mechanics, but also in for instance solid state physics or anywhere
were our quantum system consists of many types of particles which can also
change into each other.

As a technical detail to simplify computations, let us imagine that our
universe is a box with side length L. Then the universe has finite volume V =
L3 and if we impose periodical boundary conditions, the allowed momenta
form a countable set. In this universe the allowed momenta can be written
as

k =
2π

L
(n1, n2, n3) , (61)

for any integers n1, n2, n3. In the end of each calculation we may let L →∞
(if we have done the calculation correctly, nothing should depend on L).

Imagining that we have ordered the allowed momenta in some particular
way, we may write them as k1,k2, . . . ,ki, . . .. This gives us the possibility to
write an arbitrary state of the system as

|nk1 , nk2 , . . . , nki
, . . .〉, (62)
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which we interpret as meaning: there are nk1 particles with momenta k1

(that means plane waves), there are nk2 particles with momenta k2 and so
on. These states in fact form a complete basis, so any state can be written
as a linear combination of these basis states. To be able to write down how
operators act on these states we consider the “basic” operators ak and a†k
satisfying the commutation relations

[
ap, a†k

]
= δp,k. That is, if p and k

are different then ap and a†k commute but if they are the same they satisfy
the usual harmonic oscillator algebra. Then, remembering the harmonic
oscillator, we have that

aki
|nk1 , nk2 , . . . , nki

, . . .〉, = √
nki
|nk1 , nk2 , . . . , nki

− 1, . . .〉,
a†ki
|nk1 , nk2 , . . . , nki

, . . .〉, =
√

nki
+ 1|nk1 , nk2 , . . . , nki

+ 1, . . .〉. (63)

Thus, the a, a† operators describe the basic operations which take us between
different states. For instance, a process where a particle with momentum k1

is scattered into a particle with momentum k2 would be accomplished by
the operator a†k2

ak1 acting on the state |1k1 , 0, . . .〉. Explicitly, using (63), we
would have

a†k2
ak1|1k1 , 0, . . .〉 = a†k2

|0, 0, . . .〉 = |0, 1k2 , . . .〉. (64)

As in the case of the harmonic oscillator, any state in the basis can be
constructed by acting with the a† operators on the vacuum

|nk1 , nk2 , . . . , nki
, . . .〉 =

(
a†k1

)nk1

√
nk1 !

(
a†k2

)nk2

√
nk2 !

. . .

(
a†ki

)nki

√
nki

!
. . . |0〉. (65)

Let us now look at the coordinate representation of these states. Since
we know the total number of particles in each state we know how many
coordinates we need, i.e. one particle has three coordinates x, two particles
have six coordinates x1,x2 etc. Therefore we have

〈x|1k〉 = φk(x)

〈x1,x2|1k1 , 1k2〉 = φk1(x1)φk2(x2), (66)

where we have denoted the coordinate representation of the state with mo-
mentum k as φk = 1√

V
eik·x. The factor 1√

V
is a normalization factor.
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Now consider the operator

φ(x) =
∑

k

akφk(x). (67)

When its hermitian conjugate acts on the vacuum, it creates a state

φ†(x0)|0〉 =
∑

k

1√
V

e−ik·x0a†k|0〉 =
∑

k

|1k〉 1√
V

e−ik·x0 . (68)

In the coordinate representation, the resulting state looks like

〈x|φ†(x0)|0〉 =
∑

k

〈x|1k〉 1√
V

e−ik·x0 =
1

V

∑

k

eik·(x−x0). (69)

The final expression may seem a little bit strange but it is really a delta
function. If x 6= x0 the exponential oscillates for each k and on average
it is zero. For x = x0 however, all exponentials are 1, independently of
k, so the sum diverges. The integral over x of this function gives zero for
all terms with k 6= 0 and V for the k = 0 term. The factor 1

V
ensures

that the final result of the integration is 1. Thus we see that the operator
φ†(x0) creates a wavefunction which in coordinate representation is a delta
function located at x0 or in other words, the operator φ†(x0) creates a particle
completely localized at x0 complementary to a†k which creates a particle with
fixed momentum k. In the same way, the operator φ(x0) annihilates a particle
located at x0.

Now consider any operator on the full system that can be thought of as
being composed of operations on single particles. In formulas we would write

O =
∑
a

Oa, (70)

where the sum is over all particles in the system. This is a very general
expression. Many operators of physical interest are of this type. For instance,
the total energy is the sum of the energy of the single particles. The total
momentum is the sum of the momenta of the single particles etc.

The operator Oa is a “normal” one particle operator. Its action on a
one particle state can be expanded into a linear combination of one particle
states

Oxφa(x) =
∑

b

φb(x)fba, (71)
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where, as usual

fba =
∫

d3x φ∗b(x)Oxφa(x). (72)

Thus the action of each of the one particle operators in (70) can be seen as
a reshuffling of the particles. The total number of particles is not changed,
but they are moved between different states.

If we want to write how the operator (70) acts on the basis (62) we
know that since it does not change the total number of particles but rather
shuffles them around, it has to be written as a linear combination of the
operators a†aab since this operator first annihilates a particle in state b but
then immediately creates a particle in state a. Explicitly we write

O =
∑

ab

faba
†
aab, (73)

and you should check that the coefficients fab are really the same as in (72)
by for instance check how O acts on one particle states. Thus we may write

O =
∑

ab

∫
d3x φ∗b(x)Oxφa(x)a†aab = (74)

∫
d3x

(∑
a

aaφa(x)

)†
Ox

(∑

b

abφb(x)

)
=

∫
d3x φ†(x)Oxφ(x),

where we have used the operator φ(x) defined in (67). From this we read off
the procedure for writing operators (this works only for operators that can
be thought of as being composed of operations on the single particles) in the
second quantized formalism. Take the one particle operator (here written
Ox) and compute what looks like an expectation value but instead of a wave
function we use the operator φ(x). Since we know what the operator φ(x)
does we know how to interpret this expression intuitively. First the operator
φ annihilates a particle located at x (if there is a particle there, otherwise the
result is zero), then the operator Ox computes whatever it should compute
(the energy, momentum or something else) and finally the particle is created
again by φ†. The integral means that this process is repeated for each point
in space and then summed.

Notice also that here is the origin of the awkward term “second quanti-
zation”. It comes from the fact that the operator φ looks like an arbitrary
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wavefunction but with the coefficients in the expansion replaced by the an-
nihilation operators aa. Thus it looks like the wave function is “quantized
again” which of course is not true and is the source of much confusion. Second
quantization is just a formalism, within the framework of ordinary quantum
theory, to describe systems with many particles and in particular where the
types of particles may change.

There is a pleasant surprise incorporated in the second quantized formal-
ism. Since the creation operators a†a commute with themselves, any wavefunc-
tion is automatically symmetric with respect to interchange of these particles
as should be the case for bosons. This naturally leads to the question what
one should do if one would like to instead describe fermions since in that case
the wavefunctions should be anti-symmetric with respect to interchange of
particles. The natural thing to try is to use operators which do not commute,
but anti-commute. That is, operators ba, b

†
a which satisfy

{
ba, b

†
b

}
= bab

†
b + b†bba = δab,

{ba, bb} =
{
b†a, b

†
b

}
= 0. (75)

In this case, since the creation operators anti-commute, we get an extra
minus sign when we interchange particles b†ab

†
b = −b†bb

†
a giving us the required

behavior under interchange of particles. Furthermore we see that if we try
to put more than one particle in each state

|2〉 = b†b†|0〉 =
1

2

{
b†, b†

}
|0〉 = 0! (76)

This means that the Pauli principle is automatically incorporated when we
use anti-commuting creation/annihilation operators.

6 Dyson’s method - the interaction picture

Since we have found the time dependent plane wave solutions of the Dirac
equation, we completely know the time evolution of any state, if there are no
interactions (the theory without interactions we call the free theory). Just
Fourier expand the full wavefunction at any given time and then let the
individual plane waves evolve in time. The problem comes when we consider
an interacting theory. Then the Hamiltonian can be written as a sum of
two operators H = H0 + HI where H0 is the free Hamiltonian which is
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responsible for the (almost trivial) time evolution of the free theory (i.e. the
plane waves are eigenstates of H0) and HI is the interaction Hamiltonian
which does not necessarily commute with H0 or even with itself at different
times. This makes the time evolution problem quite involved. However,
Dyson has invented a nice little trick which “hides” the (almost trivial) time
evolution of the free theory so that we may concentrate on the (slightly more
complicated) time evolution given by the interaction Hamiltonian HI . We
want to solve the “Schrödinger” equation

(H0 + HI) |ψ〉 = i
∂

∂t
|ψ〉. (77)

Now define a new state |ψ〉 = e−iH0t|χ〉. Inserting this we get

(H0 + HI) e−iH0t|χ〉 = i
∂

∂t

(
e−iH0t|χ〉

)
= e−iH0t

(
i
∂

∂t
+ H0

)
|χ〉. (78)

Multiplying from the left with eiH0t and using that H0 commutes with itself
we get

eiH0tHIe
−iH0t|χ〉 = i

∂

∂t
|χ〉. (79)

If we define a time dependent interaction Hamiltonian HI(t) = eiH0tHIe
−iH0t

this equation takes a very simple form

HI(t)|χ〉 = i
∂

∂t
|χ〉, (80)

i.e. it looks just like the Schrödinger equation, but with the Hamiltonian
HI(t). The “trivial” time dependence generated by H0 is taken care of by
making the operators in HI evolve in time like in the free theory. Notice that
since |χ〉 is a solution to the time dependent Schrödinger equation it depends
on time as in the so called Schrödinger representation while the operator
HI(t) = eiH0tHIe

−iH0t depends on time as an operator in the Heisenberg re-
presentation! This is a funny mix of representations known as the interaction
representation. Anyway, from our studies of Quantum Mechanics we know
how to solve the time dependence of |χ〉. The solution is given as

|χ(t)〉 = U(t, t0)|χ(t0)〉, (81)
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where we have introduced the time evolution operator

U(t, t0) = T
[
e
−i

∫ t

t0
HI(t)dt

]
, (82)

where T represents the time ordering operator.
One may worry that it is really the wave function |ψ〉 which is the “cor-

rect” wave function which one should use to calculate probability amplitudes
but it is not difficult to show using what you know about the time evolution
operator (exercise) that the expressions

〈ψf |T
[
e−i

∫
(H0+HI)dt

]
|ψi〉, (83)

and

〈χf |T
[
e−i

∫
HI(t)dt

]
|χi〉, (84)

are equal.

7 The quantized Dirac field

We would now like to write the equivalent of the field operators (67) for
the Dirac field. Since we know that electrons are fermions, we know that
we should use anti-commuting creation/annihilation operators rather than
commuting ones. With this in mind we may immediately write down a
candidate for the field operators

ψ(x) =
1√
V

∑

k

4∑

r=1

1√
2 |E|

bk,ru
(r)(k)eik·x. (85)

Here r ∈ {1, 2, 3, 4} is an index which runs over the four independent spinor
solutions. Since we are using the interaction representation, we now need to
make this operator transform in time according to the free theory. That is,
ψ(t) = eiH0tψe−iH0t. If one then uses the formula eABe−A = B + [A,B] +
1
2!

[A, [A,B]] + . . . and the fact that
[
H0, b

†
k,r

]
= E(k)b†k,r

1, one finds that

1This follows from the fact that H0|1k〉 = E(k)|1k〉 and that H0|0〉 = 0. Alternatively
one may explicitly evaluate the (second quantized) Hamiltonian which turns out to be
H0 =

∑
k,r Eb†k,rbk,r
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bk,r(t) = bk,re
−iEt which tells us that

ψ(x, t) =
1√
V

∑

k

(
2∑

r=1

1√
2E

bk,ru
(r)(k)e−iE(k)t+ik·x

+
4∑

r=3

1√
2 |E|

bk,ru
(r)(k)e+i|E(k)|t+ik·x


 . (86)

Notice that we had to separate the positive energy solutions (r = 1, 2) from
the negative energy solutions (r = 3, 4) since they will have a time depen-
dence of different type! In fact, the time dependence of the negative energy
annihilation operators looks more like the time dependence of a creation
operator. Loosely one can reason as follows; if the operator O(t) creates
something the final state should have bigger energy than the initial state.
Thus we have

〈Ef |O(t)|Ei〉 = 〈Ef |eiH0tOe−iH0t|Ei〉 = 〈Ef |Oei(Ef−Ei)t|Ei〉, (87)

so we see that a creation operator should have the time dependence e+iEt. If,
on the other hand, the operator O would annihilate something, then Ef < Ei

and the time dependence going together with annihilation should thus be of
the type e−iEt. This gives us a hint on how to treat the problematic negative
energy solutions which seem to be inherent in any relativistic theory. Namely
we define

d†k,1 = −b−k,4,

d†k,2 = b−k,3. (88)

The annihilation of a negative energy electron is thus reinterpreted as the
creation of a new positive energy particle, a positron. The new particle has
exactly the same properties as the electron (mass etc) except that the charge
is opposite. It is known as the anti-particle of the electron. To go together
with this we also redefine the spinors

v(1)(k) = −u(4)(−k),

v(2)(k) = u(3)(−k). (89)

With these new definitions we may rewrite the field operator in the Heisen-
berg representation as

ψ(x, t) =
1√
V

∑

k

2∑

r=1

1√
2E

(
bk,ru

(r)(k)e−iE(k)t+ik·x
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+d†k,rv
(r)(k)e+iE(k)t−ik·x)

. (90)

According to what we know about second quantization, this operator will
annihilate an electron at point x and create a positron at x.

8 Scattering of electrons in the field of a nu-

cleus (Rutherford/Mott scattering)

We will consider the scattering of an electron in the field of a positively
charged heavy particle, typically in the field of a nucleus, so we will take the
potential to be:

φ = A0 =
Ze

r
(91)

The incoming state will of course be a state describing the incoming electron
with momentum p and spin r. That is, it will be described by the state

|i〉 = b†p,r|0〉 (92)

since the b† operator creates a state of one electron with the specified mo-
mentum and spin. The outgoing, final state is also a state with only one
electron, but since the electron has scattered it has a different momentum k
and a (possibly) different spin s. This is given by the state

|f〉 = b†k,s|0〉 (93)

The probability amplitude for this process (scattering of an electron with
momentum p and spin r to an electron with the momentum k and spin s
we get by taking the initial state |i〉 and evolve it with the time evolution
operator and finally taking the overlap with the state 〈f|. The probability
amplitude is therefore given by the expression

M = 〈f|T e−i
∫

HI |i〉 (94)

and the probability is of course the absolute square of the probability ampli-
tude.

We know that HI is small (since e is a small number) so we can evaluate
the probability amplitude in perturbation theory

〈f|T e−i
∫

HI |i〉 = 〈f|i〉 − ie〈f|
∫

d4x ˆ̄ψ/Aψ̂|i〉+ . . . (95)
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Notice here that the time ordering operator T is trivial since all operators
are at the same time. Only in the higher order terms is the T operator
important. If k 6= p which means that scattering has taken place, the first
term is zero.

Inserting the information we have we can compute

M = − i

V

∑

q1,t1

∑

q2,t2

∫
d4x

Ze2

r
〈0|bk,s


 1√

2Eq1

dq1,t1 v̄q1,t1e
−iq1·x +

1√
2Eq1

b†q1,t1ūq1,t1e
iq1·x




γ0


 1√

2Eq2

d†q2,t2vq2,t2e
iq2·x +

1√
2Eq2

bq2,t2uq2,t2e
−iq2·x


 b†p,r|0〉

(96)

There are in principle four different terms but clearly only terms with the
same number of creation and annihilation operators will survive. There are
two such terms, the first being the one where we select the positron cre-
ation/annihilation operators from the parenthesis. The operators squeezed
between the vacuum states in that case are

〈0|bk,sdq1,t1d
†
q2,t2b

†
p,r|0〉 (97)

and using the anti-commutation relations we can transform this into

δp,kδr,sδq1,q2δt1,t2 (98)

We see that this term does not give anything unless p = k which means
that no scattering is taking place. It would represent a process where the
electron is just passing by when a positron is created and annihilated out of
the vacuum. This clearly have no effect on the scattering process and we will
therefore drop this term.

The second term is the one with only electron creation/annihilation op-
erators which, writing only the operators, gives us

〈0|bk,sb
†
q1,t1bq2,t2b

†
p,r|0〉 = δk,q1δs,t1δq2,pδt2,r (99)

This is the type of term we expect. The interpretation is that the incoming
electron gets annihilated and there is a new electron (with new momentum
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and spin) created, i.e. the electron gets “scattered”. We thus get the formula

M = − i

V

∑

q1,t1

∑

q2,t2

∫
d4x

Ze2

r

ei(q1−q2)·x
√

4Eq1Eq2

(
ūq1,t1γ

0uq2,t2

)
δk,q1δs,t1δq2,pδt2,r (100)

We can use the Kronecker deltas to get rid of the summations

M = − i

V

∫
d4x

Ze2

r

ei(k−p)·x
√

4EpEk

(
ūk,sγ

0up,r

)
=

−i
U(k− p)

V
√

4EpEk

(ūk,sγ
0up,r)

∫ T/2

−T/2
dt ei(Ek−Ep)t (101)

where we have introduced the 3-dimensional Fourier transform of the coulomb
potential

U(k) ≡
∫

d3x
Ze2

|x| e−ik·x =
4πZe2

|k|2 (102)

When we let the interaction time T go to infinity, the last integral in (101)
is just (2π times) a delta function of the energy telling us that the energy is
conserved in the scattering process.

Now the actual probability, let us call it P , is given by the absolute square
of the probability amplitude

P = |M|2 =
|U |2

4V 2EpEk

∣∣∣ūk,sγ
0up,r

∣∣∣
2 |2πδ(Ek − Ep)|2 (103)

Here the last term, the delta function square, may seem a little bit odd, but
we can treat it using a trick, namely, we may write it as

|2πδ(Ek − Ep)|2 = lim
T→∞

2πδ(Ek − Ep)
∫ T/2

−T/2
dt ei(Ek−Ep)t (104)

Due to the presence of the delta function, the Ek − Ep in the integrand can
be replaced by 0. This means that the integrand can be replaced by 1 and
thus the integral is equal to T . We therefore get the result

P = lim
T→∞

|U |2
4V 2EpEk

∣∣∣ūk,sγ
0up,r

∣∣∣
2
T2πδ(Ek − Ep) (105)
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which gives us an expression for the probability per unit time

w ≡ P

T
=

|U |2
4V 2EpEk

∣∣∣ūk,sγ
0up,r

∣∣∣
2
2πδ(Ek − Ep) (106)

Since we cannot experimentally separate scattering into final energy and
momenta which are close to each other, we need to sum over all these proba-
bilities to get a total probability for scattering into a state with final energy
Ek or into a state with energy close to it. This we do by multiplying the
probability with the density of states ρ(Ek) and then integrate over energy

wtot =
∫

dEk
|U |2

4V 2EpEk

∣∣∣ūk,sγ
0up,r

∣∣∣
2
2πδ(Ek − Ep)ρ(Ek) =

|U |2
4V 2E2

p

∣∣∣ūk,sγ
0up,r

∣∣∣
2
2πρ(Ep) (107)

This expression now depends only on the energy of the incoming electron
Ep which we will hereafter denote by just E. Note however that the spinors
u still depend on the 3-dimensional final momentum k. Because of energy
conservation |k| = |p|, but the direction can still be different.

The density of states function ρ(E) we find in the following way. We have
assumed that the universe is a (large but finite) box with length, width and
hight L. In such a box the allowed 3-momenta are not arbitrary but rather
discrete points momentum space. Only momenta with values ki = 2π

L
ni i =

1, 2, 3, where ni are integers are allowed. This gives a density of states in
momentum space as ρ(k) = L3

(2π)3
= V

(2π)3
. Since the energy is a function of

the 3-momenta we can write

ρ(E)dE = ρ(k)d3k =
V

(2π)3
k2d |k| dΩk (108)

where we have introduced spherical coordinates in momentum space. From
this it follows that

ρ(E) =
V

(2π)3
k2d |k|

dE
dΩk (109)

and since dE
d|k| = |k|

E
we have

ρ(E) =
V

(2π)3
E |k| dΩk (110)
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We thus have the number

w =
|U |2

4V 2E2

∣∣∣ūk,sγ
0up,r

∣∣∣
2 V

(2π)2
E |k| dΩk (111)

representing the probability per unit time that a particle gets scattered into
the space angle dΩk. More precisely, since the incoming wave-function is
extended in all space and is normalized to one, which means that there is
only one particle in the whole universe, we have calculated the probability
for scattering if we have an incoming flux (= the number of particles per

unit time and unit area) of v
V

(where v = |k|
E

is the speed of the incoming
particle). Since we would like to get a number which is not dependent on the
particular incoming flux that we have chosen, we divide the probability w by
the flux and get a number called the (differential) cross section. This number
characterizes the physical process and is not dependent on any particular
choice of flux used in the experiment. It is given by

dσ =
|U(k− p)|2

4(2π)2

∣∣∣ūk,sγ
0up,r

∣∣∣
2
dΩk (112)

To get the actual number of scattered particles per unit time that we will
measure in our detector, we have to multiply this number with the incoming
flux we are using in the experiment. If we are interested here in the cross
section when the incoming particle has some particular spin and the outgoing
particle also has some fixed spin we just insert their corresponding spinors u
and ū in the expression for the cross-section above and we are done.

However, if we assume that the initial state is unpolarized which means
that half of the particles have spin up and the other half have spin down,
but that the relative phases of the particles are totally random, then the
resulting probability (cross section) is given by averaging over the spin of the
initial wave-function. In this case that means summing the final result over
r and multiplying by 1

2
. If we also do not measure the spin of the outgoing

particle we have to sum the final probability (cross section) over the separate
probabilities to measure an outgoing particle with spin up and an outgoing
particle with spin down. This gives us

dσ =
|U(k− p)|2

4(2π)2

1

2

∑
r

∑
s

∣∣∣ūk,sγ
0up,r

∣∣∣
2
dΩk (113)

The sums over the different spins can be written
∑
r

∑
s

(
ūk,sγ

0up,rūp,rγ
0uk,s

)
(114)

25



or, writing out the matrix indexes explicitly
(∑

s

(
(uk,s)a (ūk,s)b

) (
γ0

)
bc

∑
r

(
(up,r)c (ūp,r)d

) (
γ0

)
da

)
(115)

which, defining the matrix Mab(k) ≡ ∑
s (uk,s)a (ūk,s)b, can be written

Tr
(
M(k)γ0M(p)γ0

)
(116)

Using the explicit representation of the spinors one can find that

M(k) = /k + m (117)

so we have

dσ =
|U(k− p)|2

8(2π)2
Tr

(
(/k + m)γ0(/p + m)γ0

)
dΩk (118)

Using the gamma-matrix anti-commutation relations we can compute

Tr
(
(/k + m)γ0(/p + m)γ0

)
= 4

(
m2 + EkEp + k · p

)
(119)

Finally using that Ek = Ep and |k| = |p| we can choose a coordinate system
so that p is along the z-axis and k is pointing in the (θ, φ) direction. Inserting
this we get the final formula for the relativistically corrected Rutherford
formula also called the Mott cross section.

dσ =
Z2e4

4 sin4
(

θ
2

) E2

|k|4
(

1− v2 sin2

(
θ

2

))
dΩ (120)

9 Pair creation

What is the probability that an electron/positron pair is created in the po-
tential

Aµ =
(
0, 0, 0,

√
4πa cos (ωt)

)
(121)

This 4-potential represents an electric field directed in the 3 direction and
oscillating with frequency ω. In this case the initial and final states are of
course given by

|i〉 = |0〉 (122)

|f〉 = b†k1,r1
d†k2,r2

|0〉
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representing the fact that initially we do not have any particles at all but we
will end up with both an electron with momentum k1 and a positron with
momentum k2. As usual the probability amplitude is given by

M = 〈f|T e−i
∫

HI |i〉 (123)

which, to lowest order in the expansion parameter e can be written as

M = −ie〈f|
∫

d4x ˆ̄ψ/Aψ̂|0〉 = −ie
∫

d4xA3〈0|bk1,r1dk2,r2

ˆ̄ψγ3ψ̂|0〉 (124)

It is quite clear that the only piece that will survive is the piece containing

the operator b† from ˆ̄ψ and the operator d† from ψ̂. What remains is

−ie

V

∑
q1,s1

∑
q2,s2

∫
d4xA3

ei(q1+q2)·x
√

4Eq1Eq2

(
ūq1,s1γ

3vq2,s2

)
〈0|bk1,r1dk2,r2b

†
q1,s1

d†q2,s2
|0〉

(125)

which, using the anti-commutation relations simplifies to

ie

V

∫
d4xA3

ei(k1+k2)·x
√

4Ek1Ek2

(
ūk1,r1γ

3vk2,r2

)
(126)

Inserting the expression for the potential we write

iea
√

4π

V
√

4Ek1Ek2

(
ūk1,r1γ

3vk2,r2

) ∫
d4x cos(ωt)ei(k1+k2)·x (127)

The integral can be performed by rewriting cos(ωt) in terms of exponentials
as
∫

d4x cos(ωt)ei(k1+k2)·x =
∫

d3xe−i(k1+k2)·x
∫

dtei(Ek1
+Ek2

)t eiωt + e−iωt

2
=

(2π)4

2
δ3 (k1 + k2) (δ (Ek1 + Ek2 + ω) + δ (Ek1 + Ek2 − ω)) (128)

The term containing δ (Ek1 + Ek2 + ω) will clearly not give any contribution
since Ek1 , Ek2 and ω are all positive. Therefore we have for the probability
amplitude

M =
i(2π)4ea

√
4π

2V
√

4Ek1Ek2

(
ūk1,r1γ

3vk2,r2

)
δ3 (k1 + k2) δ (Ek1 + Ek2 − ω) (129)
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Again we see that the delta functions express energy conservation ω = Ek1 +
Ek2 and momentum conservation k1 + k2 = 0. Namely, the frequency of the
electric field has to represent an energy which precisely matches the energy of
the created electron/positron pair. Also, the electron/positron has to come
out back-to-back so that momentum is conserved. This also means that
Ek1 = Ek2 ≡ E.

The probability is the absolute square of the probability amplitude

P =
πe2a2

4V 2E2

∣∣∣ūk1,r1γ
3vk2,r2

∣∣∣
2 ∣∣∣(2π)3δ3 (k1 + k2) (2π)δ (2E − ω)

∣∣∣
2

(130)

By a similar trick as in the last section we evaluate the square of the delta
functions to be

∣∣∣(2π)3δ3 (k1 + k2) (2π)δ (2E − ω)
∣∣∣
2

= V T (2π)4δ3 (k1 + k2) δ (2E − ω) (131)

giving us

P = T
πe2a2(2π)4

4V E2

∣∣∣ūk1,r1γ
3vk2,r2

∣∣∣
2
δ3 (k1 + k2) δ (2E − ω) (132)

As in the previous example, we cannot separate final states which are too
close in phase space. Therefore we have to sum over these probabilities to
get a total “effective” probability. As in the previous example, this means
including a factor V

(2π)3
d3k for each final particle giving us

P = T
πe2a2(2π)4

4V E2

∣∣∣ūk1,r1γ
3vk2,r2

∣∣∣
2
δ3 (k1 + k2) δ (2E − ω)

V

(2π)3
d3k1

V

(2π)3
d3k2

(133)

One of the integrals is easily performed using the first delta function giving us
that k1 = −k2 ≡ k and the second integral we can perform, as in the previous
case after rewriting d3k = |k|2 d |k| dΩk = |k|2 d|k|

dE
dEdΩk = |k|EdEdΩk. The

result is (noticing that δ(2E − ω) = 1
2
δ(E − ω

2
))

P = V T
e2a2 |k|
16πω

∣∣∣ūk1,r1γ
3vk2,r2

∣∣∣
2
dΩk (134)

Notice that the probability is proportional to the volume (of the region with
the electric field) and the time we let the field act, in accordance to physical
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expectations. This makes it more useful to speak about the probability per
unit volume and unit time, P

V T
.

If we are not observing the spins of the final particles we have to sum over
the different probabilities of observing the different possible spins. Then we
will get the formula

P

V T
=

e2a2 |k|
16πω

dΩk

∑
r1,r2

∣∣∣ūk1,r1γ
3vk2,r2

∣∣∣
2

(135)

Using the trick of the last section, this can be rewritten as

P

V T
=

e2a2 |k|
16πω

dΩkTr
(
(/k1 + m)γ3(/k2 −m)γ3

)
(136)

or, using the anti commutation relations of the gamma matrices and remem-
bering that k1 = (E,k), k2 = (E,−k)

P

V T
=

e2a2 |k|
16πω

dΩk2ω
2

(
1− v2 cos2(θ)

)
=

e2a2ω2

16π

√
1− 4m2

ω2

(
1− v2 cos2(θ)

)
dΩk (137)

which gives the probability of an electron/positron pair with a momentum
with angle θ towards the electric field. If we are interested in the total
probability, irrespective of the angle, we have to integrate over dΩ to get

P

V T
=

e2a2ω2

6

√
1− 4m2

ω2

(
1 +

2m2

ω2

)
(138)

Notice that there is a “threshold” in the energy. The probability is zero for
ω ≤ 2m ≤ 2E, i.e. the energy of the photons in the field must be larger than
the mass of the electron/positron pair to be able to create it. In contrast the
probability is non-zero for arbitrary small amplitude a of the field.

10 The quantized electro-magnetic field

In the two previous examples the electro-magnetic field was treated classically
as an external field. In order to incorporate photons into the theory we need
to quantize also the electro-magnetic field. We will do this in a relativistically
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covariant fashion, so let us start by recapitulating some notation. Remember
that we may use a scalar potential φ and a vector potential A to describe
the electric and magnetic fields

E = −∇φ− ∂tA,

B = ∇×A. (139)

Introducing the four vector Aµ = (φ,A) we may write the electric and the
magnetic field in a compact form

F µν = ∂µAν − ∂νAµ =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 . (140)

Using F µν , Maxwell’s equations can also be written covariantly as

∂µF
µν = 0,

∂µF νσ + ∂σF µν + ∂νF σµ = 0. (141)

Here we have used Einstein’s summation convention (sum over repeated in-
dexes). It is interesting to observe that Aµ is not uniquely specified by the
electric and magnetic field. Namely, if we define a new vector potential by

Aµ
new = Aµ

old + ∂µχ, (142)

for any function χ(x), the field strength F µν , and thus the electric and
magnetic fields, remain unchanged. This we can use to simplify the form
of Maxwell’s equations. If we choose χ so that ∂µA

µ
new = 0, i.e. so that

∂µ∂
µχ + ∂µA

µ
old = 0, then we have

∂µF
µν
new = ∂µ (∂µAν

new − ∂νAµ
new) = ∂µ∂

µAν
new = 0, (143)

that is, each component of the vector potential has to satisfy the (massless)
Klein-Gordon equation (which we have already solved!). Thus, the vector
potential we will use will have to satisfy two equations

∂µA
µ = 0,

∂µ∂
µAν = 0. (144)
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However, this still does not completely specify Aµ. We may still shift it as
Aµ

fin = Aµ
new + ∂µΛ with a Λ satisfying ∂µ∂

µΛ = 0 since this leaves the two
equations (144) invariant. This additional invariance can be used to choose
A0

fin = 0. We have thus seen that we can always choose a vector potential
which satisfies the following three equations

A0 = 0,

∂µA
µ = 0, (145)

∂µ∂
µAν = 0.

This choice of the form of the vector potential (or choice of gauge as the
jargon goes) is known as the Coulomb gauge.

Using this information we may now immediately write down the quantized
electromagnetic field

Aµ =
1√
V

∑

k,α

1√
2ω

(
ak,αε(α)

µ e−ikx + a†k,αε?(α)
µ eikx

)
. (146)

From the third equation in (145) we find that kµk
µ = ω2 − k2 = 0. The

second equation tells us that k · ε(α) = 0 while the first equation tells us that
ε
(α)
0 = 0. We thus find that ε(α)

µ is a four vector with zero time component
and orthogonal to the four momentum. Thus, out of the four orthonormal
four vectors

ε(0)
µ = (1,0),

ε(1)
µ = (0, ε̄(1)),

ε(2)
µ = (0, ε̄(2)), (147)

ε(3)
µ = (0,

k

|k|),

only ε(1)
µ and ε(2)

µ are admissible. Thus we see that the sum over α in (146)
is restricted to α = 1, 2 in order for Aµ to satisfy all three equations in
(145). The ε(α)

µ vectors are known as the polarization vectors of the photon.

As usual, when we second quantize, the ak,α, a†k,α become annihilation and
creation operators which annihilate/create a photon with momentum k and
polarization ε(α)

µ .
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11 The electron propagator

If we are interested in the next to lowest order corrections to the scattering
in an external potential, we have to study the term

−e2

2
〈f|

∫
d4x1

∫
d4x2T

[
(ψ̄/Aψ)(x1)(ψ̄/Aψ)(x2)

]
|i〉 (148)

Notice here that the T operator is non-trivial and important since the two
ψ̄/Aψ factors change place if t2 > t1.

Let us first assume that t1 > t2. Then the ordering given above is the
correct one and we can use the term as it stands. For each ψ factor there
are two different choices for the operator, one associated to the electron and
one associated with the positron. Since there are four ψ operators, we have
in principle 16 different terms. However, out of these 16 terms, only 2 are
non-trivial. All the others are either zero or they represent “non-connected”
terms in the sense discussed before. For instance, there is one term which
represents an electron getting scattered at x1 while at x2 a positron is created
and annihilated but there is no contact between these two points. The first
non-trivial term is schematically

〈0|bfb
†
1b1b

†
2b2b

†
i |0〉 = δf1δ12δ2i (149)

representing the incoming electron being scattered first at x2 and then, later
at x1. The second non-trivial term is

〈0|bfd1b1b
†
2d
†
2b
†
i |0〉 = −δ12δf2δ1i + δ12δ12δfi (150)

the second term here is again “non-connected”, representing a process with no
scattering because of the δfi but the first term is interesting and slightly hard
to interpret. Since t1 > t2 we have to interpret it as the incoming electron
flies past the point x2 where there is an electron/positron pair created and
later annihilates with the positron just created at x2. The electron created
at x1 is in fact the final outgoing electron. Graphically we have

x2

x1

x2

x1

(1) (2)

-
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Similarly, when t2 > t1 we have graphically

x2
x1

(4)

x2

x1

(3)

- +

Using this knowledge we write diagram (1) and (3) (where the initial electron
is annihilated in x2) as

〈0|bf ψ̄a(x1)|0〉〈0|T
[
ψb(x1)ψ̄c(x2)

]
|0〉〈0|ψd(x2)b

†
i |0〉 (151)

and the diagrams (2) and (4) (where the initial electron is annihilated in x1)
as

〈0|bf ψ̄c(x2)|0〉〈0|T
[
ψd(x2)ψ̄a(x1)

]
|0〉〈0|ψb(x1)b

†
i |0〉 (152)

and the total amplitude is of course the sum of these two terms. We see that
in this expression the object 〈0|T

[
ψa(x1)ψ̄b(x2)

]
|0〉 plays an important role.

It represents the particle going between the points x1 and x2 and if t1 > t2
it is an electron but if t2 > t1 it is a positron. This object is therefore called
the electron/positron propagator and we will now proceed to calculate it.

Because of the time ordering operator T we have to consider two cases.
Assume to begin with that t1 > t2. Then we pick out the electron cre-
ation/annihilation operators and the propagator can be written as

∑

k1,s1

∑

k2,s2

e−ik1·x1+ik2·x2

2V
√

E1E2

(u1)a(ū2)b〈0|b1b
†
2|0〉 (153)

Since 〈0|b1b
†
2|0〉 = δk1,k2δs1,s2 we can evaluate one of the sums “for free”

∑

k1,s1

eik1·(x2−x1)

2V E1

(u1)a(ū1)b (154)

Using the results of the previous section (
∑

s u(s)
a ū

(s)
b = (/k + m)ab) we can

calculate the sum over the spin in the expression for the propagator. The
result is

∑

k1

eik1·(x2−x1)

2V E1

(/k1 + m)ab (155)
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For convenience we will here change the summation over momenta
∑

k into
an integral. This we can do since the volume of the universe is large (so that
the distribution of states in momentum space is almost continuous) which
means that

∑
k = V

(2π)3

∫
d3k. This gives us

∫ d3k

(2π)3
eiE(t2−t1)e−ik·(x2−x1) (/k + m)ab

2E
(156)

(where we have dropped the index 1 for convenience). Notice here that E is
a function of k.

The same analysis in the case where t2 > t1 gives

−
∫ d3k

(2π)3
eiE(t1−t2)e−ik·(x1−x2) (/k −m)ab

2E
(157)

where the minus sign comes from the fact that the T operator has reordered
two fermionic operators.

We can rewrite the result in a more covariant form by using the integral

−e−iE|t|

2E
= lim

ε→0

1

2πi

∫ ∞

−∞
dk0

e−ik0t

k2
0 − E2 + iε

(158)

The first part of the propagator then becomes

∫ d3k

(2π)3
eiE(t2−t1)e−ik·(x2−x1) (/k + m)ab

2E
=

(−i/∂2 + m)ab

∫ d3k

(2π)3

eiE(t2−t1)

2E
e−ik·(x2−x1) =

(−i/∂2 + m)ab

∫ d3k

(2π)3
i
∫ dk0

2π

eik0(t2−t1)

k2
0 − E2 + iε

e−ik·(x2−x1) (159)

Since E2 = k2 + m2 the denominator of the integrand can be written k2
0 −

E2 + iε = k2
0 − k2 −m2 + iε = k2 −m2 + iε giving us

i (−i/∂2 + m)ab

∫ d4k

(2π)4

eik·(x2−x1)

k2 −m2 + iε
(160)

and pushing the derivative operator back in, we get

i
∫ d4k

(2π)4

(/k + m)ab

k2 −m2 + iε
eik·(x2−x1) (161)
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The second part of the propagator (the one with t2 > t1) can similarly be
rewritten

i
∫ d4k

(2π)4

(−/k + m)ab

k2 −m2 + iε
eik·(x1−x2) (162)

and, changing the integration variable from k to −k, we get

i
∫ d4k

(2π)4

(/k + m)ab

k2 −m2 + iε
eik·(x2−x1) (163)

which is exactly the same expression as for the part of the propagator with
t1 > t2. We thus have a unique expression for the propagator

G(x1 − x2) ≡ i
∫ d4k

(2π)4

(/k + m)ab

k2 −m2 + iε
e−ik·(x1−x2) (164)

independent of whether t1 or t2 comes first.
Notice that if we act with the Dirac operator i/∂ −m on the propagator

we get

(i/∂ −m)G(x) = i
∫ d4k

(2π)4

(/k −m)(/k + m)

k2 −m2 + iε
e−ik·x =

i
∫ d4k

(2π)4
e−ik·x = iδ4(x) (165)

so that G(x) is the Green function of the Dirac operator in accordance with
the usual interpretation of the propagator.

12 Compton scattering

Compton scattering is scattering of a photon on an electron. In the initial
state we therefore have a photon and an electron

|i〉 = b†p,sa
†
k,α|0〉 (166)

Since the photon is physical the index α takes only the values 1, 2 corre-
sponding to the two physical polarizations of the photon. The final state
also contains a photon and an electron but with different spins and momenta

|f〉 = b†p′,s′a
†
k′,α′|0〉 (167)
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As usual, the probability amplitude is given by

M = 〈f|T e−i
∫

HI |i〉 = 〈f|i〉 − i〈f|
∫

HI |i〉 − 1

2
〈f|T

∫
HI

∫
HI |i〉+ . . . (168)

The first term is non-zero only for the case when no scattering is taking place
(p = p′, k = k′). The second term is zero because it always involves exactly
three photon creation/annihilation operators so the lowest non-trivial term
is the third one. Separating the piece that has to do with electrons/positrons
and the piece that has to do with photons we can write it as

−e2

2

∫
d4x1d

4x2〈0|bp′,s′T
[
(ψ̄aψb)(x1)(ψ̄cψd)(x2)

]
b†p,s|0〉

(γµ)ab (γν)cd 〈0|ak′,α′T [Aµ(x1)Aν(x2)] a
†
k,α|0〉 (169)

The piece associated with the electrons/positrons we have already calculated
in the previous section. It is given by two terms corresponding to the cases
where the electron first goes to the point x2, interacts, then goes to the point
x1 where it is scattered to the final electron state and, oppositely when it
goes first to x1 and then continues to x2. Graphically this can be represented
as

x1

x2x1

x2
+

For the second process the expression is

(ūp′,s′)a√
2V E ′ e

ip′·x1 i
∫ d4q

(2π)4

(/q + m)bc

q2 −m2 + iε
e−iq·(x1−x2) (up,s)d√

2V E
e−ip·x2 (170)

Here we recognize the middle part as the electron/positron propagator corre-
sponding to the piece where the electron propagates from the point x2 to the
point x1. The expression for the first term is similar. Evaluating the photon
piece we get a sum of two terms. The first comes from choosing the creation
operator in Aµ(x1) and the annihilation operator in Aν(x2), representing the
case where the incoming photon is annihilated in x2 and the outgoing pho-
ton is created in x1, and the second term (where we also have to ignore
a “non-connected” piece) comes from choosing the annihilation operator in
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Aµ(x1) and the creation operator in Aν(x2), representing the case where the
incoming photon is annihilated in x1 and the outgoing photon is created in
x2. Explicitly we have

4π
(ε?

k′,α′)µ√
2V ω′

eik′·x1
(εk,α)ν√

2V ω
e−ik·x2 + 4π

(ε?
k′,α′)ν√
2V ω′

eik′·x2
(εk,α)µ√

2V ω
e−ik·x1 (171)

Graphically we can write this as

x2

x1

x1

x2
+

Putting these two terms together we graphically get

++

++ +

Since we are integrating over x1 and x2 in the final expression these variables
are really “dummy” variables, meaning that we can anywhere rename them
as we wish. In particular we can interchange them x1 ↔ x2. From the
pictures we see that two of the pictures change into the other two under this
relabeling so we have really to calculate only two terms, graphically they
look like this

++
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The second term we can write as

π

V 2
√

E ′Eω′ω

∫
d4x1

∫
d4x2i

∫ d4q

(2π)4

ūp′,s′/εk′,α′(/q + m)/εk,αup,s

q2 −m2 + iε

eip′·x2eik′·x2e−ip·x1e−ik·x1e−iq·(x2−x1) (172)

and doing the integrals over x1 and x2 we get

π

V 2
√

E ′Eω′ω
i
∫ d4q

(2π)4

ūp′,s′/εk′,α′(/q + m)/εk,αup,s

q2 −m2 + iε

(2π)4δ4(p′ + k′ − q)(2π)4δ4(q − p− k) (173)

Notice that the delta functions express momentum conservation at each of
the vertexes. The expression for the first diagram is the same except that one
has to switch positions for the polarization vectors ε and switch the place of
k and k′ in the delta functions. We can get rid of one of the delta functions
by performing the q integral which gives us

−iπe2(2π)4δ4(p′ + k′ − p− k)

V 2
√

EE ′ωω′

[
ūp′,s′/εk′,α′

/p + /k + m

(p + k)2 −m2 + iε
/εk,αup,s+

ūp′,s′/εk,α
/p− /k′ + m

(p− k′)2 −m2 + iε
/εk′,α′up,s

]
(174)

Here we notice that the delta function which is left just expresses the momen-
tum conservation of the whole process. To simplify this expression further
we can use the Dirac equation on the spinors

/pup = mup (175)

which, using the anti-commutation relations of the gamma matrices, leads to

/p/εup = −/εmup + 2p · εup (176)

and choosing a coordinate system where the initial electron is at rest p =
(m, 0, 0, 0) so that p · ε = p · ε′ = 0 we get

− iπe2(2π)4δ4(p′ + k′ − p− k)

V 2
√

EE ′ωω′

[
ū′/ε′/k/εu

2p · k +
ū′/ε/k′/ε′u
2p · k′

]
(177)

Now we calculate the probability density by taking the absolute square
of the amplitude. At the same time we say that we are not interested in the
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polarization of the final electron, and the initial electron comes in a mixed
state so that we have to include a sum 1

2

∑
s,s′ . We then have the probability

P =

∣∣∣∣∣
πe2(2π)4δ4(p′ + k′ − p− k)

2V 2
√

EE ′ωω′

∣∣∣∣∣
2

1

2

∑

s,s′

(
ū′/ε′/k/εu

p · k +
ū′/ε/k′/ε′u
p · k′

) (
ū/ε/k/ε′u′

p · k +
ū/ε′/k′/εu′

p · k′
)

(178)

where we have used that (γµ)† = γ0γµγ0. Performing the spin sums and
noticing that the first term in each parenthesis is equal to the second if we
make the exchange ε ↔ ε′ and k ↔ −k′ we have

P =

∣∣∣∣∣
πe2(2π)4δ4(p′ + k′ − p− k)

2V 2
√

2EE ′ωω′

∣∣∣∣∣
2

Tr

(
/ε′/k/ε(/p + m)/ε/k/ε′(/p′ + m)

(p · k)2
+

/ε′/k/ε(/p + m)/ε′/k′/ε(/p′ + m)

(p · k)(p · k′) +

{
ε ↔ ε′

k ↔ −k′

})
(179)

The reason for the minus sign in the exchange of the photon momenta is
that we do not want p or p′ to change, but since p′ = p + k − k′ we have to
interchange k and k′ with an extra minus sign.

Let us perform the trace over the first term explicitly. The fact that the
trace over any odd number of gamma matrices is zero allows us to write it
as

Tr (/ε′/k/ε/p/ε/k/ε′/p′) + m2Tr (/ε′/k/ε/ε/k/ε′) (180)

Using the gamma matrix algebra we know that /a/b = −/b/a + 2a · b which also
implies that /a/a = a ·a, and using the cyclicity of the trace, we can show that
the second term is

m2Tr (/k/ε/ε/k/ε′/ε′) = m2(ε · ε)(ε′ · ε′)Tr (/k/k) = 0 (181)

Thus it only remains to calculate the first term. Anti-commuting the /p/k in
the middle and using that /k/k = k · k = 0 we have

Tr (/ε′/k/ε/p/ε/k/ε′/p′) = 2(p · k)Tr (/ε′/k/ε′/p′) (182)
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Then we can anti-commute /ε′/k and use that ε′ · ε′ = −1 to get

2(k · p)Tr ((−/k/ε′ + 2(ε′ · k)) /ε′/p′) = 8(k · p) (2(k · ε′)(ε′ · p′) + (k · p′)) (183)

where we in the last step used that Tr (γµγν) = 4gµν .
Similarly the second term in the full trace can be calculated to be

−8(k′ · p)(k · p) + 16(ε′ · ε)2(k′ · p)(k · p)− 8(k · ε′)2(k′ · p) + 8(k′ · ε)2(k · p)(184)

and the two last terms are given by the first two by the interchange above.
Summing all the traces together there are a lot of cancellations and the final
result is

8

[
k · p
k′ · p +

k′ · p
k · p + 4(ε′ · ε)2 − 2

]
(185)

or, using that k · p = mω and k′ · p = mω′

8

[
ω

ω′
+

ω′

ω
+ 4(ε′ · ε)2 − 2

]
(186)

Now let us return to the calculation of the probability, it can be written as

P =

∣∣∣∣∣
πe2(2π)4δ4(p′ + k′ − p− k)

2V 2
√

2EE ′ωω′

∣∣∣∣∣
2

8

[
ω

ω′
+

ω′

ω
+ 4(ε′ · ε)2 − 2

]
=

V T
π2e4

V 4EE ′ωω′
(2π)4δ4(p′ + k′ − p− k)

[
ω

ω′
+

ω′

ω
+ 4(ε′ · ε)2 − 2

]
(187)

Calculating the probability per unit time and summing over inseparable final
states we have

P

T
=

π2e4

V 3EE ′ωω′

[
ω

ω′
+

ω′

ω
+ 4(ε′ · ε)2 − 2

]

(2π)4δ4(p′ + k′ − p− k)
V

(2π)3
d3p′

V

(2π)3
d3k′ (188)

We get rid of the space-like part of the delta function if we perform one of
the integrals, say the one over p′, which leaves us with

P

T
=

π2e4

(2π)2V EE ′ωω′

[
ω

ω′
+

ω′

ω
+ 4(ε′ · ε)2 − 2

]

δ(E ′ + ω′ − E − ω)d3k′ (189)
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To get rid of the last delta function we can use that ω′ = |k′| to rewrite
d3k′ = (ω′)2dω′dΩk. What complicates things slightly is that since we already

used the space-like delta function, E ′ =
√
|p′|2 + m2 =

√
|k− k′|2 + m2 =√

ω2 + ω′2 − 2ωω′ cos(θ) + m2 is also a function of ω′.
To perform the integration we have to write

δ(E ′ + ω′ − E − ω)dω′ = δ(E ′ + ω′ − E − ω)
dω′

d(E ′ + ω′)
d(E ′ + ω′) =

dω′

d(E ′ + ω′)
(190)

Now

d(E ′ + ω′)
dω′

=
ω′ − ω cos(θ)

E ′ + 1 (191)

which, using that E ′ = ω − ω′ + m, we can write as

d(E ′ + ω′)
dω′

=
ω(1− cos(θ)) + m

E ′ =
ωω′(1− cos(θ)) + mω′

E ′ω′
=

k · k′ + p · k′
E ′ω′

=
(k′ + p′) · k′

E ′ω′
=

p′ · k′
E ′ω′

=
p · k
E ′ω′

=
Eω

E ′ω′
(192)

where we have used that p + k = p′ + k′ which in turn implies (by squaring)
that p · k = p′ · k′.

Finally, to get a number which is independent of how often we throw in
photons (i.e. the cross section) we have to divide by the flux. Since the
photon wave-function is normalized to one photon in the whole universe and
since the speed of the photon is 1 (in natural units), the incoming flux is 1

V
.

This gives us an expression for the cross section as

dσ =
π2e4

(2π)2EE ′ωω′

[
ω

ω′
+

ω′

ω
+ 4(ε′ · ε)2 − 2

]
E ′ω′3

Eω
dΩ =

e4

4m2

(
ω′

ω

)2 [
ω

ω′
+

ω′

ω
+ 4(ε′ · ε)2 − 2

]
dΩ (193)

which is the famous Klein-Nishina formula for the cross section of Compton
scattering.
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13 The photon propagator

Remember that in a previous section we derived the electron/positron prop-
agator which could be written as

Gab(x1 − x2) = 〈0|T
[
ψa(x1)ψ̄b(x2)

]
|0〉 (194)

As we will see in the next section, there is also a photon propagator corre-
sponding to a photon propagating between two points x1 and x2. As one can
guess, it can be written as

Dµν(x1 − x2) = 〈0|T [Aµ(x1)Aν(x2)] |0〉 (195)

Let us calculate it here so that we can use it when it appears in the next
section. Inserting the expressions for the photon fields we have

∑

k1,α1

∑

k2,α2

4π

2V
√

ω1ω2

〈0|T
[
(a†1ε1µe

ik1·x1 + a1ε
?
1µe

−ik1·x1)

(a†2ε2νe
ik2·x2 + a2ε

?
2νe

−ik2·x2)
]
|0〉 =

∑

k1,α1

∑

k2,α2

4π

2V
√

ω1ω2

{
θ (t1 − t2) ε?

1µε2νe
−ik1·x1eik2·x2〈0|a1a

†
2|0〉

+θ (t2 − t1) ε?
2νε1µe

−ik2·x2eik1·x1〈0|a2a
†
1|0〉

}
(196)

Remembering that
[
ak,α, a†k′,α′

]
= δk,k′δα,α′ α = 1, 2 (197)

(198)

we find

Dµν(x1 − x2) =
∑

k

4π

2V ω

{
θ (t1 − t2)

((
ε(1)

µ

)?
ε(1)

ν +
(
ε(2)

µ

)?
ε(2)

ν

)
e−ik·(x1−x2)

+θ (t2 − t1)
((

ε(1)
ν

)?
ε(1)

µ +
(
ε(2)

ν

)?
ε(2)

µ

)
eik·(x1−x2)

}
. (199)

This expression does not look too satisfying since the rather messy expression((
ε(1)

ν

)?
ε(1)

µ +
(
ε(2)

ν

)?
ε(2)

µ

)
appears. In fact, using the explicit expressions for

the polarization vectors

ε
(0)
k = (1, 0, 0, 0)
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ε
(1)
k = (0, ε̄1)

ε
(2)
k = (0, ε̄2) (200)

ε
(3)
k = (0,

k

|k|)

where ε̄1 and ε̄2 are two three dimensional unit vectors which are orthogonal
both to k and to each other, one may show that

−
(
ε(0)

ν

)?
ε(0)

µ +
(
ε(1)

ν

)?
ε(1)

µ +
(
ε(2)

ν

)?
ε(2)

µ +
(
ε(3)

ν

)?
ε(3)

µ = −gµν . (201)

One way to prove it would be to say that it is a symmetric matrix with
eigenvalues (-1,1,1,1), therefore it is diagonalizable to −gµν using an orthog-
onal matrix M so that MT (−ε0ε

T
0 + ε1ε

T
1 + ε2ε

T
2 + ε3ε

T
3 )M = −g. But

by multiplying on the left with M and on the right with MT we find that
(−ε0ε

T
0 + ε1ε

T
1 + ε2ε

T
2 + ε3ε

T
3 ) = −MgMT = −g.

Furthermore we may rewrite the −
(
ε(0)

ν

)?
ε(0)

µ +
(
ε(3)

ν

)?
ε(3)

µ piece using the

four vectors kµ = (ω,−k) and aµ = (ω,k) as

(
−

(
ε(0)

ν

)?
ε(0)

µ +
(
ε(3)

ν

)?
ε(3)

µ

)
= − 1

2ω2
(aµkν + kµaν) . (202)

We thus find that we may write the propagator

Dµν(x1 − x2) =
∑

k

(
−gµν +

1

2ω2
(aµkν + kµaν)

)
×

4π

2V ω

{
θ (t1 − t2) e−ik·(x1−x2) + θ (t2 − t1) e−ik·(x2−x1)

}
(203)

Again using the fact that for a high density of states we can switch the sum
over k for an integral over the density of states

∑

k

= V
∫ d3k

(2π)3
(204)

and again using the rewriting of the energy dependence as

−e−iω|t|

2ω
=

1

2πi

∫ ∞

−∞
dk0

e−ik0t

k2
0 − |k|2 + iε

(205)
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we can write the propagator as

Dµν(x1 − x2) =
∫ d3k

(2π)3
4π

(
gµν − 1

2ω2
(aµkν + kµaν)

)
×

{
θ(t1 − t2)

1

2πi

∫ dk0

k2 + iε
eik0(t1−t2)eik·(x1−x2)+

θ(t2 − t1)
1

2πi

∫ dk0

k2 + iε
eik0(t1−t2)e−ik·(x1−x2)

}
. (206)

and changing the sign of the integration variable k in the second term, we
see that both the term for t1 > t2 and the term for t2 > t1 have exactly the
same form, just as for the electron/positron propagator, so we can write it
in a compact form

Dµν(x1 − x2) = −i4π
∫ d4k

(2π)4

(
gµν − 1

2ω2
(aµkν + kµaν)

)
e−ik·(x1−x2)

k2 + iε
. (207)

This is very nice except for the “ak + ka” piece which ruins the covariant
form of the propagator. However, the fact that this piece contains explicit
factors of kµ which is the same four momentum as the momentum which
flows in the propagator saves us. To see this, let us consider a part of a
Feynman diagram looking like

p

k

p+k

The electron line corresponds to an expression (up to normalization con-
stants)

ū(p + k)γµu(p), (208)

To the γµ is connected the momentum space propagator Dµν(k). The part of
Dµν proportional to kµ together with (208) gives a contribution proportional
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to

ū(p + k)/ku(p) = ū(p + k) (/k + /p− /p) u(p) =

{Dirac equation} = ū(p + k) (m−m) u(p) = 0. (209)

Therefore the piece proportional to kµaν does not give any contribution to
physical processes and can consequently be dropped. Similarly, the piece
proportional to aµkν cancels in the other end of the propagator. The full
proof of this fact is a little bit involved. One needs to check that it is true
also when the photon propagator ends on an internal electron propagator
and not on an external line as in the simple example above. If you believe
me for now that this is true we can write the photon propagator simply as

Dµν(x1 − x2) = −i4πgµν

∫ d4k

(2π)4

e−ik·(x1−x2)

k2 + iε
. (210)

14 Electron-electron scattering

Let us now consider scattering of two electrons. Let us assume that initially
they have momenta and spins p1, s1 and p2, s2. They are scattered into
electrons with momenta and spins p3, s3 and p4.s4. We therefore take as the
initial state

|i〉 = b†1b
†
2|0〉 (211)

and as the final state we take

|f〉 = b†4b
†
3|0〉 (212)

The probability amplitude is given by the usual expression

M = 〈f|T e−i
∫

HI |i〉 (213)

and the first non-trivial term is the term which is second order in HI . Since
there are 4 b operators in the initial and final states the only combination
which will give anything is when we choose the b operators from the 4 ψ
fields. The expression is therefore

〈0|b3b4b
†b′b′′†b′′′b†1b

†
2|0〉 =

−δ1,p′′′δ2,p′δ3,p′′δ4,p + δ1,p′′′δ2,p′δ3,pδ4,p′′

+δ1,p′δ2,p′′′δ3,p′′δ4,p − δ1,p′δ2,p′′′δ3,pδ4,p′′

+ non−connected pieces (214)
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where we have used a shorthand notation in that each delta function also
comes with a corresponding delta for the spin dependence so that δ1,p really
means δ1,pδα1,α. These terms can be graphically represented as

x1 x1

x1 x1

x2 x2

x2
x2

+

1 2

43

1 2

3 4

3 4

1 221

3 4

+-

-

Again using the trick of changing the integration variables x1 and x2 we see
that the two last diagrams are equal to the two first diagrams which leaves
us with only two expressions to be calculated. The one corresponding to the
first diagram we can write as

e2

4V 2
√

E1E2E3E4

(ū4γ
µu2)(ū3γ

νu1)
∫

d4x1

∫
d4x2

ei(p4−p2)·x1ei(p3−p1)·x2〈0|T [Aµ(x1)Aν(x2)] |0〉 (215)

where in the last expression we recognize the photon propagator Dµν(x1−x2)
which we calculated in the previous section. Inserting the expression we
obtained we get

e2

4V 2
√

E1E2E3E4

(ū4γ
µu2)(ū3γ

νu1)
∫

d4x1

∫
d4x2

∫ d4k

(2π)4

ei(p4−p2−k)·x1ei(p3−p1+k)·x2
4πgµν

i(k2 + iε)
(216)

and performing the x1 and x2 integrals we get

e2

4V 2
√

E1E2E3E4

(ū4γ
µu2)(ū3γ

νu1)
∫ d4k

(2π)4

(2π)4δ(p4 − p2 − k)(2π)4δ(p3 − p1 + k)
4πgµν

i(k2 + iε)
(217)
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We can get rid of one of the delta functions by doing the k integral

e2

4V 2
√

E1E2E3E4

(ū4γ
µu2)(ū3γ

νu1)

(2π)4δ(p1 + p2 − p3 − p4)
4πgµν

i((p1 − p3)2 + iε)
(218)

Notice that the remaining delta function expresses the total conservation of
momentum. The second diagram can be easily calculated when we realize
that the only thing that differs between the second and the first diagram is
that we have to switch 3 and 4 and also the overall sign. Totally we therefore
have the probability amplitude

M =
e2(2π)4δ(p1 + p2 − p3 − p4)

4V 2
√

E1E2E3E4

{
(ū4γ

µu2)
4πgµν

i((p1 − p3)2 + iε)
(ū3γ

νu1)−

(ū3γ
µu2)

4πgµν

i((p1 − p4)2 + iε)
(ū4γ

νu1)

}
(219)

If we assume that the incoming electrons are unpolarized so that we have to
average over the incoming spins and that we do not observe the spin of the
outgoing electrons so that we have to sum over the probabilities of observing
different outgoing spin, we have to include a sum over

1

2

∑
s1

1

2

∑
s2

∑
s3

∑
s4

(220)

Introducing the notation

t = (p1 − p3)
2 = (p4 − p2)

2

u = (p1 − p4)
2 = (p3 − p2)

2 (221)

we can write the total probability as

P = T
e4(2π)6δ(p1 + p2 − p3 − p4)

4V 3E1E2E3E4

1

4

∑
s1,s2,s3,s4

∣∣∣∣∣
(ū4γµu2)(ū3γ

µu1)

t
− (ū3γµu2)(ū4γ

µu1)

u

∣∣∣∣∣
2

(222)
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which, using the expressions for the spin sums, can be written as

P = T
e4(2π)6δ(p1 + p2 − p3 − p4)

4V 3E1E2E3E4

1

4

{
Tr((/p4 + m)γµ(/p2 + m)γν)Tr((/p3 + m)γµ(/p1 + m)γν)

t2

+
Tr((/p3 + m)γµ(/p2 + m)γν)Tr((/p4 + m)γµ(/p1 + m)γν)

u2

−Tr((/p4 + m)γµ(/p2 + m)γν(/p3 + m)γµ(/p1 + m)γν)

tu

−Tr((/p3 + m)γµ(/p2 + m)γν(/p4 + m)γµ(/p1 + m)γν)

tu

}
(223)

Let us explicitly calculate the first trace and leave the other ones as an
exercise. To do this we observe that

Tr((/p + m)γµ(/q + m)γν) = Tr(/pγµ/qγν) + m2Tr(γµγν) =

4
(
pµqν − (p · q)gµν + pνqµ + m2gµν

)
(224)

giving the result for the first term

16
[
2(p1 · p2)(p3 · p4) + 2(p1 · p4)(p2 · p3) + 2(m2 − p2 · p4)(p1 · p3)+

2(m2 − p1 · p3)(p2 · p4) + 4(m2 − p1 · p3)(m
2 − p2 · p4)

]
(225)

and using that the relation p1 + p2 = p3 + p4 implies

p1 · p2 = p3 · p4

p1 · p3 = p2 · p4 (226)

p1 · p4 = p2 · p3 (227)

we can write it as

32
[
(p1 · p2)

2 + (p1 · p4)
2 + 2m2(m2 − p1 · p3)

]
(228)

Computing also the remaining traces we get the full answer

P = T
e4(2π)6δ(p1 + p2 − p3 − p4)

4V 3E1E2E3E4
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8

{
(p1 · p2)

2 + (p1 · p4)
2 + 2m2(m2 − p1 · p3)

t2

+
(p1 · p2)

2 + (p1 · p3)
2 + 2m2(m2 − p1 · p4)

u2

−2(p1 · p2)(2m
2 − p1 · p2)

tu

}
(229)

Let us choose center of mass coordinates such that

p1 = (E,p)

p2 = (E,−p)

p3 = (E,p′) (230)

p4 = (E,−p′)

and that p · p′ = |p|2 cos(θ). Then we see that we can write

p1 · p2 = m2 + 2 |p|2

p1 · p3 = m2 + 2 |p|2 sin2

(
θ

2

)
(231)

p1 · p4 = m2 + 2 |p|2 cos2

(
θ

2

)

To calculate the cross section we need to sum over the probabilities of ob-
serving final states which are close to each other in momentum space. This
we do by including the factors

V

(2π)3
d3p3

V

(2π)3
d3p4 (232)

and dividing by the incoming flux v1+v2

V
where v1 and v2 is the speed of the

1 and 2 particle respectively. In the center of mass system the speed of the
two particles are equal and can be expressed as |p|

E
so that the flux is 2|p|

EV
.

The integrals over the momenta can be taken care of in the usual way

δ4(p1 + p2 − p3 − p4)d
3p4d

3p3 = δ(E1 + E2 − E3 − E4) |p3|2 d |p3| dΩ (233)

and since in the center of mass system we have that E4 = E3 =
√
|p3|2 + m2

we can write

δ(E1 + E2 − 2E3) |p3|2 d |p3|
d(2E3)

d(2E3)dΩ =
|p3|E3

2
dΩ (234)
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Putting everything together we have

dσ =
e4(2π)6

4V 3E4

V 2

(2π)6

EV

2 |p|
|p|E

2

8

{
(p1 · p2)

2 + (p1 · p4)
2 + 2m2(m2 − p1 · p3)

t2

+
(p1 · p2)

2 + (p1 · p3)
2 + 2m2(m2 − p1 · p4)

u2

−2(p1 · p2)(2m
2 − p1 · p2)

tu

}
dΩ

=
e4

2E2

{
(p1 · p2)

2 + (p1 · p4)
2 + 2m2(m2 − p1 · p3)

t2

+
(p1 · p2)

2 + (p1 · p3)
2 + 2m2(m2 − p1 · p4)

u2

−2(p1 · p2)(2m
2 − p1 · p2)

tu

}
dΩ (235)

This cross section simplifies in the non-relativistic and the ultra-relativistic
cases. In the non-relativistic case we have that |p| ¿ m so that to lowest
order

p1 · p2 ≈ m2

p1 · p3 ≈ m2 (236)

p1 · p4 ≈ m2

t = (p1 − p3)
2 = 2m2 − 2

(
m2 + 2 |p|2 sin2

(
θ

2

))

≈ −4 |p|2 sin2

(
θ

2

)

u = 2m2 − 2

(
m2 + 2 |p|2 cos2

(
θ

2

))

≈ −4 |p|2 cos2

(
θ

2

)
(237)

which gives the expression

dσ =
e4

m2v4


 1

sin4
(

θ
2

) +
1

cos4
(

θ
2

) − 1

sin2
(

θ
2

)
cos2

(
θ
2

)

 dΩ (238)
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where v is the velocity v = |p|
m

. Notice that the first term gives exactly the
Rutherford cross-section. The two additional terms are of quantum mechan-
ical origin and come about because the particles that scatter are quantum
mechanically identical. This means that the cross section has to be invari-
ant under θ → π − θ. The second term alone would be enough to achieve
that. The third term is there however because scattering of identical Fermi
particles is very much suppressed at θ = π

2
. This is essentially an effect

of the Pauli principle which tells us that the total wave function has to be
anti-symmetric.

In the ultra-relativistic limit, |p| À m, the cross section can similarly be
written in a simple form (Møller)

dσ =
e4

8E2


1 + sin4

(
θ
2

)

cos4
(

θ
2

) +
1 + cos4

(
θ
2

)

sin4
(

θ
2

) +
2

sin2
(

θ
2

)
cos2

(
θ
2

)

 dΩ (239)

15 Feynman rules, higher order processes

Feynman graphs are very helpful to get an overview over the various contri-
butions to probability amplitudes in higher orders. Basically in n-th order
one has n vertices, and from the nature of the electromagnetic interaction
Hamltonian follows that at each vertex two fermion lines and one photon line
meet. There are a few general rules how to compose transition amplitudes
at a certain order.

1. Draw all connected graphs with a given number of vertices.

2. Add a factor eγµ to every vertex and integrate over all of space.

3. Take a propagator G(x−y), or Dµν(x−y), respectively, for each fermion
or photon line between the vertices at x and y.

4. Take free wave functions for external lines.

5. The exchange of any two fermions (in the construction of a graph from
another one) gives a minus sign, as well as every closed fermion loop.

6. In the case of n ingoing positrons there is a relative factor (−1)n in
comparison to n ingoing electrons.
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As an example we take fourth-order diagrams for electron-positron scat-
tering. Altogether there are 18 connected graphs, here we display five of
them;

x w

y z

i i’

f f’

(a) i

xx

w

x

z

y

f f’

i’(b)

i (c) i’

z

y

x w

f’f

i (d) i’

z

f f’

x

y

w

i (e) i’

z

x

w

f f’

y

Their meaning is obviously the following:

(a) Exchange of two photons,

(b) annihilation, followed by creation of a new pair,

(c) annihilation and creation, scattering of the two outgoing particles,

(d) annihilation and creation, emission and absorption of a photon by one
of the outgoing electrons,
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(e) repeated annihilation and creation.

The amplitudes for processes (a) and (b) can be calculated along the above
rules, the calculation is lengthy but straightforward. In the cases (c), (d)
and (e) however, new problems of a serious nature arise: One encounters
divergent integrals, which require new technical tools and an interpretation -
the renormalization paradigm. In the following we study the renormalization
procedure according to Pauli-Villars.

16 The vacuum polarization

Let’s begin with diagram (e). Here in relation to the corresponding second-
order diagram a “fermion loop” is inserted into the photon propagator. De-
note the ingoing electron’s momentum by p, the ingoing positron’s momen-
tum by p′, respectively. The photon four-momentum is p+p′, which is on the
other hand equal to the sum of the outgoing four-momenta. If the fermion
four-momentum in one arch of the loop is k, then in the other arc it is
p+p′−k, where k is arbitrary. For a given momentum p+p′ =: q the photon
propagator gµν

q2+iε
is replaced by

1

q2 + iε
Iµν(q,m)

1

q2 + iε
, (240)

where Iµν contains a double fermion propagator

Iµν(q,m) = −e2
∫ d4k

(2π)4
Tr

(
γµ

1

/k −m + iε
γν

1

/k − /q −m + iε

)
. (241)

(The trace appears because of the closed loop.) For large values of k the in-
tegrand goes asymptotically like k−2, so the momentum space integral Iµν(q)
diverges quadratically, as arbitrarily large momenta may circulate in the loop.
The resulting divergence is called an “ultraviolet catastrophe”. Technically
a “cut-off” of high frequencies brings a remedy, but this means a “change
of the rules in the course of the game” and needs a physical justification.
Before modifying the theory in such a way it is convenient to carry out some
formal transformations that reformulate the divergent integral.

First we write the propagator in form of an integral

1

/k −m + iε
=

/k + m

k2 −m2 + iε
= −i(/k + m)

∫ ∞

0
dz eiz(k2−m2+iε). (242)
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Insertion gives

Iµν(q, m) = −4ie2
∫ ∞

0
dz1

∫ ∞

0
dz2

∫ d4k

(2π)4
× (243)

[
kµ(k − q)ν + kν(k − q)µ − gµν(k

2 − k · q −m2)
]
×

exp
{
iz1

[
k2 −m2 + iε

]
+ iz2

[
(k − q)2 −m2 + iε

]}

To carry out the k-integral, the part of the exponent containing k and q is
rearranged in form of a complete square,

exp

[
i(z1 + z2)

(
k − z2 q

z1 + z2

)2

− i
(z2 q)2

z1 + z2

+ iz2 q2

]
.

With the definition

l := k − z2 q

z1 + z2

= k − q +
z1 q

z1 + z2

this becomes

eil2(z1+z2) e
i

z1 z2 q2

z1+z2 ,

so that the k integral turns into three types of Gaußian integrals, namely

∫ dl

(2π)4




1
lµ

lµlν


 eil2(z1+z2) =

1

16π2i(z1 + z2)2




1
0

igµν

2(z1+z2)


 .

Now

Iµν(q, m) =
α

π

∫ ∞

0
dz1

∫ ∞

0

dz2

(z1 + z2)2
e

i

[
q2 z1 z2

z1+z2
−(m2−iε)(z1+z2)

]
× (244)

{
2(gµνq

2 − qµqν)
z1 z2

(z1 + z2)2
+ gµν

[ −i

z1 + z2

− z1 z2 q2

(z1 + z2)2
+ m2

]}

(α = e2

4π
is the fine structure constant.))

The part of the integrand in square brackets can be shown to contribute
nothing. For this purpose we rescale the z’s,

zi → λ zi.
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Then this part becomes

∫ ∞

0

∫ ∞

0

dz1 dz2

(z1 + z2)2

[
m2 − i

λ(z1 + z2)
− z1 z2 q2

(z1 + z2)2

]
e

iλ

[
z1 z2 q2

z1+z2
−(m2−iε)(z1+z2)

]

= iλ
∂

∂λ

∫ ∞

0

∫ ∞

0

dz1 dz2

λ(z1 + z2)3
e

iλ

[
z1 z2 q2

z1+z2
−(m2−iε)(z1+z2)

]
.

Undoing the scaling transformation,

λ zi → zi,

makes the integral λ-independent, so the derivative is zero.
One further transformation is done by inserting the identity

1 =
∫ ∞

0

dλ

λ
δ

(
1− z1 + z2

λ

)
, (245)

leading to the form

Iµν(q, m) =
2iα

π
(qµqν − gµνq

2)
∫ ∞

0

∫ ∞

0

∫ ∞

0

dλ dz1 dz2 z1 z2

λ (z1 + z2)4
×

δ
(
1− z1 + z2

λ

)
e

i

[
z1 z2 q2

z1+z2
−(m2−iε)(z1+z2)

]
= (246)

2iα

π
(qµqν − ηµνq

2)
∫ ∞

0

∫ ∞

0
dz1 dz2 z1 z2 δ(1− z1 − z2)

∫ ∞

0

dλ

λ
eiλ(z1 z2 q2−m2+iε).

In the last line zi were again multiplied by λ. Evaluating the δ-function we
finally find

Iµν(q, m) =
2iα

π
(qµqν−gµνq

2)
∫ 1

0
dz z(1−z)

∫ ∞

0

dλ

λ
eiλ(z (1−z) q2−m2+iε), (247)

where the original asymptotic divergence of the k-integral was replaced by a
logarithmic divergence of the λ-integral.

This is the divergence we want to cut off in the regularization proce-
dure. It is removed by subtracting an analogous expression Iµν(q,M) with
a fictitious large mass M and the same behavior close to λ = 0, i. e. we
consider ∫ ∞

0

dλ

λ

(
eiλ(z (1−z) q2−m2+iε) − eiλ(z (1−z) q2−M2+iε)

)
.
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Integrals of this type can be calculated by introducing a further integration,

∫ ∞

0

dλ

λ

(
e−aλ − e−bλ

)
=

∫ ∞

0
dλ

∫ b

a
dx e−λx =

∫ b

a

dx

x
= ln

b

a
. (248)

For large M the regularized expression for the fermion loop is approximately

Īµν(q) = Iµν(q,m)− Iµν(q,M) ≈ (249)

2iα

π
(qµqν − gµνq

2)
∫ 1

0
dz z(1− z) ln

M2

m2 − q2z(1− z)
=

iα

3π
(qµqν − gµνq

2)

[
ln

M2

m2
− 6

∫ 1

0
dz z(1− z) ln

(
1− q2

m2
z(1− z)

)]
.

When Īµν is inserted into the photon propagator, the part with qµqν does
not contribute to the amplitude for the same reasons as in the unrenormalized
case. Taking the sum of the second-order and the fourth-order terms and
neglecting iε in the denominator, we get, in first order in α, for the photon
propagator

Dµν → igµν

q2
− i

1

q2
Īµν

1

q2
, (250)

explicitly

igµν

q2

[
1− α

3π
ln

M2

m2
+

2α

π

∫ 1

0
dz z(z − 1) ln

(
1− q2 z(1− z)

m2 − iε

)]
. (251)

In the limit q2 → 0 the renormalization amounts merely to a multiplica-
tion of the propagator by the factor

Z3 = 1− α

3π
ln

M2

m2
. (252)

For a physical interpretation consider Coulomb scattering with small mo-
mentum transfer: The lowest-order expression e2ūγ0 u/q2 is, in first order in
α, replaced by

e2 ūγ0 u

q2

(
1− α

3π
ln

M2

m2

)
=: e2

R

ūγ0 u

q2
. (253)

eR =
√

Z3 e is called the renormalized charge of the electron.
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eR is the observed charge, which is measured as e2
R = 4π

137
in natural units.

The parameter e in the Dirac equation would be the unobservable charge,
if the electromagnetic interaction could be switched off. Accordingly e is
called the “bare charge”, and eR is called the dressed charge. The interpre-
tation of the difference between eR and e is that a charge is surrounded by a
cloud of virtual photons, which, in turn, create short-lived electron-positron
pairs, visualized by fermion loops in Feynman diagrams. As effective dipoles,
these electron-positron pairs partially screen off the bare charge from distant
observers, so that it appears smaller.

The renormalized photon propagator (251) splits into two parts: the limit
q2 → 0, which contains the cutoff parameter M and describes the static vacu-
um polarization, and a q-dependent part, which is physically meaningful as
first-order correction in α. Fermion loops of the considered type are some-
times called “vacuum bubbles”.

As an example of a first-order correction consider once more the Coulomb
scattering amplitude:

ie2 ūγ0u

q2

[
1− α

3π
ln

M2

m2
− α

15π

q2

m2

]
≈ ie2

R

ūγ0u

q2

[
1− αR

15π

q2

m2
+ O(α2

R)

]
.

In position space the momentum space quantity q2 corresponds to the Lapla-
cian operator, so that we get the following action on the electrostatic poten-
tial (

1− αR

15πm2
4

)
e2

R

4πr
=

e2
R

4πr
+

αRe2
R

15πm2
δ(3)(~x). (254)

In first order in α there is a point-like potential that leads to a lowering of
the energy levels of s-wave functions in atoms, which have their maximum
at ~x = ~0,

∆Enl = −Ze2
RαR

15πm2
|ψnl(0)|2 = −1

2
Z2α2m

8Z2α2

15πn3
δl0, (255)

the Lamb shift. For hydrogen for example, a frequency shift by ν = ∆E/h̄ =
27 MHz corresponds to the energy difference between the 2S 1

2
and the 2P 1

2

levels.
For large momentum transfer, |~q |2 ≈ −q2 À m2, on the other hand, the

logarithm in the physical part of the propagator can be approximated in the
following way

ln

(
1− q2 z(1− z)

m2 − iε

)
≈ ln

|~q|2z(1− z)

m2
= ln

|~q |2
m2

+ ln(z(1− z)),
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where the contribution of the last logarithm, when integrated with z(1− z),
is small, so that the unrenormalized propagator becomes

− igµν

q2

(
1 +

α

3π
ln
|~q |2
m2

− α

3π
ln

M2

m2

)
+ O(α2). (256)

Growing momentum transfer ~q partially compensates the renormalization.
As large |~q | means small impact parameter, particles coming very close to
each other in a scattering process “dive” into their clouds of virtual dipoles
and begin to feel the bare charge.

What remains to do is to take care of free photon lines. Like propagators,
they pick up a vacuum bubble in fourth order and a factor Z3 after renormal-
ization. As for the propagator,

√
Z3 is associated to the vertex, where the

line begins or ends, for open ends, where there is no charge to renormalize,
we have to divide the amplitude by

√
Z3, when the renormalization is done.

17 Electron mass renormalization

17.1 Fourth-order correction to the fermion propaga-
tor

Diagram (d), where the electron emits and then absorbs a photon, is a contri-
bution to the self-energy of an electric charge, which raises also a problem in
classical electrostatics. The amplitude for the loop consisting of one electron
and one photon propagator is

iΣ(p) := (−ie)2
∫ d4k

(2π)2

−i

k2 − λ2 + iε
γµ

i

/p− /k −m− iε
γµ. (257)

λ is a small photon mass introduced in order to avoid infrared divergences.
(A physical argument could be a finite extension of the universe as a cutoff
of infinite wavelengths.) The integral is linearly divergent.

Like in eq. (242) we introduce variables zi to rewrite the integrals in Σ,

Σ(p) =
α

2π

∫ ∞

0

∫ ∞

0

dz1 dz2

(z1 − z2)2

[
2m− /p z1

z1 + z2

]
e

i

(
p2z1z2
z1+z2

−m2z2−λ2z1

)
, (258)

and like in the case of vacuum polarization, we rescale zi by γzi and apply
1 =

∫∞
0

dγ
γ

δ
(
1− z1+z2

γ

)
to obtain

Σ(p) =
α

2π

∫ 1

0
dz [2m− /p(1− z)]

∫ ∞

0

dγ

γ
eiγ[p2z(1−z)−m2z−λ2(1−z)+iε]. (259)
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The integral

J(p,m, λ) =
∫ ∞

0

dγ

γ
eiγ[p2z(1−z)−m2z−λ2(1−z)+iε] (260)

diverges logarithmically. Σ(p) is regularized by subtraction of an analogous
integral with a large photon mass Λ, followed by application of (248),

J(p,m, λ)− J(p,m, Λ) ≈ ln
Λ2(1− z)

m2z + λ2(1− z)− p2z(1− z)− iε

≈ ln
Λ2(1− z)

m2z2
+ ln

m2z2

m2z + λ2(1− z)− p2z(1− z)
.

Now λ can be dropped, then the last term is zero for p2 = m2, i. e. for a free
electron on the mass shell. This leads to the regularized expression

Σ̄(p) =
α

2π

∫ 1

0
dz [2m− (1− z)/p] ln

Λ2(1− z)

m2z2
+

α

2π

∫ 1

0
dz [2m− (1− z)/p] ln

m2 z

m2 − p2(1− z)
.

The integrals in the first, cutoff-dependent term can be easily carried out, so
that

Σ̄(p) =
3αm

4π
ln

Λ2

m2
− α

4π
(/p−m) ln

Λ2

m2
+ (261)

α

2π

∫ 1

0
dz [2m− (1− z)/p] ln

m2 z

m2 − p2(1− z)
.

The integral containing the physical corrections is approximately

α

2π

∫ 1

0
dz[2m− (1− z)/p] ln

m2 z

m2 − p2(1− z)
=

αm

π

(
m2 − p2

p2

)
ln

m2 − p2

m2
− (262)

α

4π
/p

(
m2 − p2

p2

) [
1 +

(
m2 + p2

p2

)
ln

m2 − p2

m2

]
.

Close to the mass shell p2 ≈ m2 (p2 −m2 ≈ 2m(/p−m)), we find

Σ̄(p) ' 3α

4π
m ln

Λ2

m2
− α

4π
(/p−m)

(
ln

Λ2

m2
+ 4 ln

m2 − p2

m2

)
. (263)
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17.2 Propagator renormalization

In the step from second to fourth order perturbation theory i
/p−m

is replaced
by

i

/p−m
+

i

/p−m
(−iΣ(p))

i

/p−m
=

i

/p−m− Σ(p)
+ O(α2). (264)

Here Σ̄(p) is briefly written as Σ. This relation is shown in the following way

1

/p−m
+

1

/p−m
(−/p + m + Σ + /p−m)

1

/p−m
=

1

/p−m
+

1

/p−m
(−/p + m + Σ)

(
1− 1

/p−m− Σ
(/p−m)

)
1

/p−m
=

1

/p−m
−

(
1− 1

/p−m
Σ

) (
1

/p−m
− 1

/p−m− Σ

)
=

1

/p−m− Σ
+

1

/p−m
Σ

(
1

/p−m
− 1

/p−m− Σ

)
.

The difference in the last parentheses is of order one in α like Σ, this proves
relation (264).

Now we write Σ̄ in the form

Σ̄(p) = δm− [Z−1
2 − 1 + C(p)](/p−m) (265)

with

δm =
3αm

4π
ln

Λ2

m2
. (266)

The function C(p) is chosen such that C(p) = 0 when p = m, thus

Z−1
2 − 1 =

α

4π

(
ln

Λ2

m2
− 2 ln

m2

λ2

)
.

(265) is inserted into (264),

i

/p−m− Σ̄
=

i

/p−m− δm + [Z−1
2 − 1 + C(p)](/p−m)

=

i

−δm + [Z−1
2 + C(p)](/p−m)

=
i Z2

(/p−m)[1 + Z2C(p)]− Z2δm
.
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As Σ̄(p) is of order α, from (265) follows that 1−Z2 + Z2 C(p) is of order α,
thus

Z2 = 1 + Z2 C(p) + O(α).

δm being of order α, too, it follows that

Z2 δm = (1 + Z2 C(p)) δm + O(α2),

so that, up to order α2,

i

/p−m− Σ̄
=

i Z2

(/p−m− δm)[1 + C(p)]
+ O(α2). (267)

With the definition of the renormalized physical mass,

mph = m + δm = m

(
1 +

3α

4π
ln

Λ2

m2

)
(268)

the cutoff constant Λ has disappeared. δm is interpreted as the electron’s
mass increase coming from its electrostatic field. The unrenormalized mass m
is unobservable. In the limit p = mph, when C(p) = 0, the propagator simply
picks up a multiplicative factor Z2 in addition to the mass renormalization,

i

/p−m
→ i Z2

/p−mph

. (269)

Analogously to the case of charge renormalization, we could multiply the
charges at the ends of the propagator by a factor

√
Z2, but this factors will

cancel in the end. For each free fermion line, however, we have to divide the
amplitude by

√
Z2.

18 Vertex correction

18.1 Vertices in fourth order

The quantity corresponding to the loop in (c) is

Λµ(p′, p) = (270)

(−ie)2
∫ d4k

(2π)4

−i

k2 − λ2 + iε
γν

i

/p− /k −m + iε
γµ

i

/p ′ − /k −m + iε
γν .
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Again λ is a small photon mass, the integral is logarithmically divergent.
Consider the case of small energy-momentum transfer between an external

source and a free fermion p ≈ p′ ≈ m (see figure in chapter 13). In this case
Λµ is expressed in a simple way by the renormalization constant Z1, which
is defined by

ū(p) Λµ(p, p) u(p) = (Z−1
1 − 1) ū(p) γµ u(p). (271)

Λµ(p, p) can be calculated from Σ(p), observing that

Λµ(p, p) = −∂Σ(p)

∂pµ
, (272)

this relation coming from

∂

∂pµ

1

/p−m
= − 1

/p−m
γµ

1

/p−m
. (273)

(Compare (270) with (257).) With the aid of (272) Λµ(p, p′) can be split into
a part with Z1, hiding the divergence, and a unique finite part Λc

µ(p, p′),

Λµ(p, p′) = (Z−1
1 − 1)γµ + Λc

µ(p, p′). (274)

Application of (272) to (265) yields

∂Σ(p)

∂pµ
= −(Z−1

1 − 1) γµ,

(note that C(p) = 0 for p = m), and in the sequel

ū(p) Λµ(p, p) u(p) = (Z−1
2 − 1) ū(p) γµ u(p),

which means
Z1 = Z2, (275)

so far up to order α. Like Z2, also Z1 could be plugged into a further charge
renormalization.
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18.2 Synopsis of renormalisations

At a vertex of a Feynman diagram all the considered renormalisations meet.
In the neighborhood there are the following diagrams, up to order e2:

(a) (b) (c) (d)

(a) is the lowest (2nd order) graph, (b) - (d) show 4th order contributions.
We consider the limit of small energy-momentum transfer, i. e. the limit of
the photon four momentum q going to zero. The contributions corresponding
to the graphs are the following:

(a) −ieγµ

(b) −ieγµ(Z−1
1 − 1)

(c) 2ieγµ(Z−1
2 − 1)

(d) −ieγµ(Z3 − 1)

For the free photon line we divide by
√

Z3, for each of the two free fermion
lines by

√
Z2. Altogether we obtain thus for the diagrams in the above figure

the expression

− ieγµ

Z2

√
Z3

[
1 + (Z−1

1 − 1)− 2(Z−1
2 − 1) + Z3 − 1

]
. (276)

The three expressions Z−1
1 − 1, Z−1

2 − 1, and Z3 − 1 are of order α.
Now this is transformed, keeping only terms up to order α in every step.

First we take out the factor 1 + (Z−1
1 − 1) from the square bracket:

[1 + (Z−1
1 − 1)]

[
1− 2(Z−1

2 − 1)− (Z3 − 1)

1 + (Z−1
1 − 1)

]
.

The counter of the fraction being already of order α, the denominator can
be approximated by 1, leading to

≈ Z−1
1 [Z3 − 2(Z−1

2 − 1)].
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Then we take out the factor Z3, and because Z3 ≈ 1 + O(α), in first order
(Z−1

2 − 1)/Z3 ≈ Z−1
2 − 1 :

Z−1
1 Z3[1− 2(Z−1

2 − 1)].

Up to order α the square bracket can be replaced by

1

[1 + (Z−1
2 − 1)]2

= Z2
2 .

Collecting these terms we finally get

−ie
Z2

Z1

√
Z3 γµ (277)

as the corrected vertex contribution. When Z1 = Z2, as we know it is in
order α, then the renormalizations due to Z1 and Z2 cancel and all we get is

−ieRγµ

with eR =
√

Z3 e, as it was obtained after handling the vacuum polarization.
In the next chapter we will see that this is indeed the case in all orders.

19 The Ward-Takahashi identity

In the last chapters we have studied the renormalization procedure in the
lowest order, where divergences occur, that is in fourth order in e. In this
order it was possible to hide all infinities in the electron’s/positron’s charge
and mass. Particularly, two of three renormalization constants turned out to
be equal.

Generally, a theory is called renormalizable, if an approach of this kind
works in all orders, more specifically, if a finite number of renormalization
constants is sufficient. The appearance of new kinds of divergences that
would require new renormalization constants in every order would spoil the
predictive power of a theory.

Concerning the relation Z1 = Z2 there is a general identity that extends
its validity to all orders, the Ward-Takahashi identity. Furthermore it con-
firms that the term kµaν +kνaµ in the photon propagator does not contribute
to amplitudes in the general case, when the photon does not necessarily cou-
ple immediately to free fermions.
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To prove the Ward-Takahashi identity we consider arbitrary diagrams
with at least one external photon with momentum k and denote the proba-
bility amplitude of the process by M(k). If we remove this photon, we get
a simpler diagram, which contributes to a simpler amplitude M0. Inserting
the photon somewhere else into the diagram gives a contribution to M(k),
and summing over all diagrams that contribute to M0 and over all possible
insertions in each of these diagrams gives the full amplitude M(k). The
Ward-Takahashi identity applies for each diagram contributing to M0, once
we sum over all insertion points. The external photon must attach either to
a fermion line that runs out of the diagram to two external points, or to a
closed fermion loop.

1) Fermion line with n vertices going to infinity.

p
′

pn−1 p3 p2 p1 p

qn q3 q2 q1

The ingoing fermion momentum is p, the photon momenta are counted
as ingoing, such that p1 = p + q1, . . . , pn = p′ = p +

∑
i qi. Now insert the

photon with momentum k after the i-th vertex:

qn qi+1 qi q1

k

p′ + k pi+1 + k pi + k pi ppi−1pn−1 + k p1

At the vertex, where this photon couples to the fermion, we replace εµ(k)
by kµ, so that we obtain

−iekµγ
µ = −ie[(/pi + /k −m)− (/pi −m)].

With this relation the expression for this vertex and the two adjacent fermion
lines, represented by propagators, becomes

i

/pi + /k −m
(−ie/k)

i

/pi −m
= e

(
i

/pi −m
− i

/pi + /k −m

)
.
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Thus the diagram has a segment described by

. . .
i

/pi+1 + /k −m
γλi+1

(
i

/pi −m
− i

/pi + /k −m

)
γλi

i

/pi−1 −m
γλi−1 . . .

When we insert the photon at the position i−1, the corresponding expression
is

. . .
i

/pi+1 + /k −m
γλi+1

i

/pi + /k −m
γλi

(
i

/pi−1 −m
− i

/pi−1 + /k −m

)
γλi−1 . . .

The first term in this expression cancels the second term of the previous one,
and so on. In the sum over all possible insertions the unpaired terms at the
ends survive.

µ
∑

i

kµ

k

q

p

= −

q − k q

p p + k

e ·

The sum on the left-hand side is meant to be taken over all insertion
points i. p′ + k has been relabeled as q. Obviously the right-hand side does
not contribute to the transition amplitude M(k) for p → q.

2) Closed fermion loop.
The left diagram of Fig. shows a closed fermion loop with n photons at-

tached. In the right diagram a photon with momentum k is inserted between
the positions i and i + 1. The momentum k exits at vertex 1 by convention.
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pn+k

p1

qn

q2

p2

q1

qn

pn q1

p1

q2

p2

q3p3

pi

pi + k

pi+1 + k

k

qi+1

pi−1

qi

When we insert the photon between the vertices 1 and 2, we obtain the
contribution

−e
∫ d4p1

(2π)4
Tr

[
i

/pn + /k −m
γλn. . .

i

/p2 + /k −m
γλ2

(
i

/p1 −m
− i

/p1 + /k −m

)
γλ1

]
.

The first term will be canceled by one of the amplitudes coming from the
insertion between 2 and 3, and so on. In the end two terms survive,

−e
∫ d4p1

(2π)4
Tr

[
i

/pn −m
γλn

i

/pn−1 −m
γλn−1 . . .

i

/p1 −m
γλ1

− i

/pn + /k −m
γλn

i

/pn−1 + /k −m
γλn−1 . . .

i

/p1 + /k −m
γλ1

]
.

After shifting the integration variable from p1 to p1 + k in the second term
the two terms cancel. The diagrams with the photon inserted along a closed
loop add up to zero.

In the most general case there may be n ingoing and n outgoing fermions
and an arbitrary number of further external photons. Graphically the Ward-
Takahashi identity is shown in the following figure,
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(q1 . . . qi . . . qn)

µ

k

(p1 . . . pi . . . pn)

Σ
insertions

= eΣi

(q1 . . . qi − k . . . qn)

(p1 . . . pi . . . pn)

−

(q1 . . . qi . . . qn)

(p1 . . . pi + k . . . pn)

in terms of a formula this is

kµMµ(k, p1, . . . , pn, q1, . . . , qn) =

e
∑

i

[M0(p1, . . . , pn, q1, . . . , qi − k, . . . , qn)

−M0(pi, . . . , pi + k, . . . , pn, q1, . . . , qn)] .

The right-hand side does not contribute to the S-matrix.
In the simplest case there is just one external fermion line, so that the

left-hand side can be seen in fact as a full, renormalized vertex.

µ
∑

i
kµ

k

p + k

p

= −

p p + k

p p + k

e ·

For full propagators S(p) = i
/p−m−Σ(p)

and a full vertex Γµ the diagram can
be translated into

S(p + k) [−iekµΓµ(p + k, p)] S(p) = e[S(p)− S(p + k)]. (278)
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If we multiply by S−1 (inverse propagators = Dirac matrices) from the left
and from the right, we obtain

−ikµΓµ(p + k, p) = S−1(p + k)− S−1(p). (279)

Sometimes this more special relation is called the Ward-Takahashi identity.
From this we can find a relation between Z1 and Z2: In the limit k → 0

Γµ(p + k, p) → Z−1
1 γµ and S(p) → i Z2

/p−m
.

Expansion of (279) around k = 0 gives (recall the differential relation (272))

−ikµZ
−1
1 γµ = −iZ−1

2 (/p + /k −m− /p + m),

and from this follows Z1 = Z2 in all orders.
In quantum electrodynamics no new types of divergences than the con-

sidered ones occur in higher orders; such theories are called renormalizable.
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