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High frequency measurements using
Vector Network Analyser

Task summary:

Perform measurements of simple devices (connectors, cables, their assemblies)

up to GHz frequencies using VNA. Observe strange phenomena, investigate

resonances, analyse frequency dependence of re�ection and transmission coef-

�cients. Perform fancy and complex matrix gymnastics. Learn what-to-do and

what-not-to-do at high frequencies. Enjoy.

Transmission line theory

Classical circuit analysis is based on two Kircho�'s laws:

current The sum of currents in a network of conductors meeting at a junction is zero.

voltage The sum of voltages around any closed loop is zero.

While they seem obvious for any physicist, they are not. Actually, they are making one very big

assumption, i.e. that propagation of signal is instantaneous and happens only via the conductors.

In fact, they are the low frequency asymptotic solution of more general Maxwell equations and

they are usable only if the dimension of circuit L is negligible in comparison with wavelength λ.

In�nite homogeneous transmission line

Still, even at higher frequencies (L ≈ λ) some simpli�cation (vs. full solution of Maxwell equations)

can be done. It is extension of lumped element circuit theory. We consider the classical R, L, C

components as point-like, but we must introduce a new element � transmission line, which takes

into account a new class of wave phenomena � �nite propagation time, re�ection, wave impedances,

etc. Originally, the theory was developed for long distance transmission lines used for telegraphy.

Homogeneous two conductor transmission line can be constructed using distributed element

circuit theory from in�nite number of elementary R, L, C, G components.

The current I and voltage U are not constant along the transmission line, so they are functions

of both time and position. They are related by telegraph (or telegrapher's) equations

∂

∂x
V (x, t) = −L ∂

∂t
I(x, t)−R I(x, t)

∂

∂x
I(x, t) = −C ∂

∂t
V (x, t)−G V (x, t)

If the problem is nice and linear, the solution of telegraph equations is a superposition of in-

�nite number of waves with di�erent frequencies and propagating both forward and backward

(Uω=U0ωe
iωt±γx, Iω=I0ωe

iωt±γx). For each such wave, its current and voltage at certain position
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Obrázek 1: A section of transmission line modelled using lumped elements.

x are linked by the complex impedance Z(x). Generally, this impedance depends on frequency

and can be di�erent for forward and backward wave. For in�nite transmission line, this complex

impedance is called characteristic impedance and depends only on frequency, not on position or

direction of propagation

Zc =

√
R+ iωL

G+ iωC

Spatial wave propagation constant γ is complex (it consists of attenuation constant α and phase

constant β) and frequency dependent

γ = α+ iβ =
√

(R+ iωL)(G+ iωC)

Most of real transmission lines are constructed in a way that R, G can be neglected (ap-

proximation of lossless transmission line). In that case, the characteristic impedance and spatial

propagation constant become much simpler

Zc =

√
L

C

γ = iω
√
LC

The characteristic impedance of two conductor lossless homogeneous transmission line depends

on geometry (e.g. diameter and distance of the two conductors) and on the dielectric separating

them. The velocity of propagation (both phase and group velocities are the same as the lossless

line is not dispersive) depends only on the dielectric (and for a vacuum dielectric it is equal to the

speed of light c).
While the transmission line characteristic impedance has units Ω, it is de�nitely not some

resistance. I.e. lossless line has purely real Zc, but no Joule heating losses.

The theory of two wire transmission line, forward and backward waves, characteristic impe-

dance, propagation constant, etc. can be actually generalised to di�erent number of conductors

(e.g. 0 � free space propagation, 1 � hollow waveguides, 3 � tri-phase lines in electric power dis-

tribution, etc.) and even more exotic electromagnetic �eld con�gurations (e.g. non TEM waves).

Terminated transmission line

A typical (easiest but still of practical interest) case for an analysis is a �nite length (d) transmis-

sion line with characteristic impedance Z0 terminated by the load impedance ZL and carrying a

sinusoidal steady state signal with single frequency ω.
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Obrázek 2: Loaded �nite transmission line � di�erent schematics styles.

Ratio of complex voltage and current (i.e. impedance) is di�erent at di�erent positions x
(which is measured from the line end, so x=0 corresponds to the place of load impedance) along

the transmission line

Z(x) = Z0
ZL + Z0 tanh(γ x)

Z0 + ZL tanh(γ x)

For the lossless line (Z0 is real, γ = iβ), it simpli�es to

Z(x) = Z0
ZL + iZ0 tan(β x)

Z0 + iZL tan(β x)

From the point of view of observer the lossless transmission line of characteristic impedance

Z0 and length d transforms the load impedance ZL at its end to impedance Zin at its input

Zin = Z0
ZL + iZ0 tan(β d)

Z0 + iZL tan(β d)

When condition Z0 = ZL is met, the line behaves like in�nite transmission line and dependence

of impedance on position disappears. This case is called ideally terminated line or matched line.

Wave propagation theory (and thus also its special case � transmission line theory) shows

that if the line is not ideally terminated (i.e. Z0 6= ZL), there will be re�ections. It is most often

described by the voltage re�ection coe�cient, i.e. ratio of voltage complex amplitudes of re�ected

and forward waves in a steady sinusoidal state

Γ =
Vr
Vf

Its generally complex, as both Vr and Vf are phasors. Similarly, a current re�ection coe�cient could

be de�ned. As both of them are essentially the same (sometimes with opposite sign, depending
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on de�nition), it is rarely used. Re�ection coe�cient Γ is not constant along the transmission line

(surely, because the phases of forward and backward waves are also changing along the line). For

the lossless line, magnitude |Γ| is constant along the line while for a lossy line, |Γ| exponentially
decreases when going from the end (where ZL is placed) to its begining.

Voltage re�ection coe�cient at the transmission line end depends on impedances

Γ =
ZL − Z0

ZL + Z0

There are three remarkable special cases:

• short circuit, ZL = 0, Γ=-1

• open circuit, ZL =∞, Γ=+1

• matched line, ZL = Z0, Γ=0

Similarities with Fresnel equations for re�ection coe�cient in optics and observed inversion of

phase when n2 > n1 are obvious.
Re�ection on transmission lines can be described also by other parameters. Historically, voltage

standing wave ratio (VSWR) was easily measurable even at very high frequencies. It is a ratio

between the maximum (anti-node) voltage and minimum (node) voltage on the line with a standing

wave (i.e. superposition of forward and backward waves)

VSWR =
1 + |Γ|
1− |Γ|

Notice, that all information about phase shift of re�ected wave is lost by using the absolute value,

However, the position of the node can be easily measured simultaneously with VSWR using a

slotted line technique.

The power re�ected at the mismatch is given by Γ2. This power re�ection coe�cient is often

expressed as return loss in logarithmic scale and with a unit of decibel (dB)

RL = −20 log |Γ| [dB]

Theory of two port networks

In many cases in physics and engineering and especially in circuit signal propagation, an abs-

traction of two port network is extremely useful. Consider a arbitrary network consisting of linear

elements (typically R, L, C but sometimes even more exotic elements are permitted) which has

two well de�ned ports (each with two poles) to the outside world. Moreover, consider a steady

state, either static (DC) or sinusoidal steady state at certain frequency ω. This consideration is

actually not very limiting as thanks to the network linearity even arbitrary waveforms can be

Fourier separated to a superposition of single frequency signals.

Any such linear two port network can be mathematically described by 2×2 complex mat-

rix which transforms currents and voltages. Physical properties of the network like reciprocity

(transmitting the same going from port 1 to port 2 as going from port 2 to port 1), symmetry

(same impedances at port 1 and port 2) and losslessness (no resistors to dissipate power) re�ect

in mathematical properties of the matrix.

There are many possibilities, how to choose which pair of parameters is transformed to the

other pair. Among the most used are for example

impedance matrix [
V1
V2

]
=

[
z11 z12
z21 z22

] [
I1
I2

]
admitance matrix [

I1
I2

]
=

[
y11 y12
y21 y22

] [
V1
V2

]
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hybrid matrix, typical in transistor equivalent networks[
V1
I2

]
=

[
h11 h12
h21 h22

] [
I1
V2

]
ABCD matrix, also known as chain, cascade or transmission matrix[

V1
I1

]
=

[
A B
C D

] [
V2
−I2

]
For very high frequencies, the current and voltage are ill-de�ned. For this reason, the abs-

traction of power waves going in (a) and out (b) of ports 1 and 2 is much more suitable (and

curiously, this power wave abstraction works well for all frequencies, even DC). Power and phase

of the signal are easily measurable even at optical frequencies.

scattering matrix suitable even for very high frequencies[
b1
b2

]
=

[
s11 s12
s21 s22

] [
a1
a2

]
Physical meaning of s-parameters is straightforward:

s11 corresponds to re�ection coe�cient Γ at port 1

s22 corresponds to re�ection coe�cient Γ at port 2

s21 corresponds to transmission coe�cient going from port 1 to port 2

s12 corresponds to transmission coe�cient going from port 2 to port 1

In the four statements above, it is intentionally written 'corresponds to' and not 'is', as termination

of unused port must be taken into account.

Mathematically, the s-parameters are transforming complex amplitudes but practically, we

are dealing with signal power and phase. Therefore, the absolute value of s-parameter is often

expressed in logarithmic scale and in dB units

10 log |Sij |2 = 20 log |Sij | [dB]

For example, insertion loss, i.e. loss of power due to attenuation of signal when passing through

a device from port 1 to port 2, is de�ned by

IL = −20 log |S21| [dB]

Obrázek 3: Two port device � schematics and de�nition of quantities.



F7544 Experimentální metody 1: High frequency measurements using VNA 6

Loss of power due to re�ection at input (port 1) is return loss (which we already mentioned above)

RL = −20 log |S11|[ [dB]

When both amplitude and phase of s-parameter are to be plotted simultaneously vs frequency,

a polar graph or Smith chart are usually chosen.

For reciprocal networks, the S-matrix is symmetric (s21 = s12); for symmetrical networks

s11 = s22 and for lossless networks the S-matrix is unitary [S]∗ = [[S]T]−1. Examples of non-

reciprocal devices are those using active components (ampli�ers) or chirality breaking devices

(e.g. Faraday e�ect).

For cascaded high frequency devices, an equivalent to ABCD matrix (which is low frequency

only, as it uses U , I) should use complex amplitudes of forward and backward waves

T matrix scattering transfer matrix [
a1
b1

]
=

[
t11 t12
t21 t22

] [
b2
a2

]
Arbitrarily long cascade of two port devices is also a two port device itself and its resulting T-

matrix can be calculated by simple matrix multiplication of T-matrices of each device in the

cascade.

Conversion from S-matrix to T-matrix

t11 =
1

s21

t12 =
−s22
s21

t21 =
s11
s21

t22 =
−det

(
S
)

s21

where determinant det(X) = x11 · x22 − x12 · x21.
Conversion from T-matrix to S-matrix

s11 =
T21
T11

s12 =
det
(
T
)

T11

s21 =
1

T11

s22 =
−T12
T11

Experimental set-up

The device used for measuring scattering matrix is called Vector Network Analyser. In our case,

it will be Rohde&Schwarz ZVL, which operates in frequency range 10 kHz � 15 GHz and has

two ports. It is bidirectional, as it can measure the complex 2×2 S-matrix in one go, without any

device reconnecting or reorienting.

Before the actual measurement, the VNA must be calibrated by certi�ed precision calibration

kit, using Open, Short and Match for each port and then Through between the ports.

In most tasks, we will use devices with SMA connector, which is a�ordable and should be usable

up to 18 GHz. Nearly all devices-under-test we will use are passive, reciprocal and symmetric,

which should essentially reduce number of measurements by factor 2..
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Tasks

1. get acquainted with the VNA

2. calibrate the VNA in the range 10 kHz�10 GHz

3. measure the S-parameters of simple SMA-to-SMA piece, discuss frequency response, reci-

procity, symmetry, losslessness

4. verify the suitability of BNC connectors

5. verify the suitability of N connectors

6. using T-matrix, remove the in�uence of SMA-to-BNC pieces

7. observe S-matrix of BNC T-piece with and without open coaxial cable, �nd resonances,

calculate lengths

8. terminate the cable from the previous task, compare theoretical and experimental results

9. determine an unknown RLC impedance from measured S parameters

10. repeat previous task, but with longer cable, remove its e�ect by T-matrix

11. determine the dimensions of waveguide from transmission curve

12. measure the gain and operating frequency range of microwave ampli�er

Recommended literature

D. Pozar: Microwave engineering

Tysl, R�uºi£ka: Teoretické základy mikrovlnné techniky

https://europa.eu/youreurope/index_cs.htm
https://www.planobnovycr.cz/
https://www.msmt.cz/
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