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The magnetic moment operator reproducing these matrix elements in the selected four-dimensional
J = 0, 1 subspace can be written down in an elegant way

M = 2S −Leff = −
√

6 i(s†T − T †s)− 1
2
i(T †× T ) . (2.90)

In this form it is clear that the major potential to generate a magnetic moment have the tran-
sitions between s and T states, the second part is the already mentioned contribution of the J
moment of the triplet that is equivalent to −i(T †× T ) within the J = 0, 1 subspace.

2.3 Electronic hopping and tight-binding approximation

So far we have been dealing with the (rather complex) physics of correlated valence shells of
the individual ions. In this section we are going to activate connections between the ions in the
form of electronic hopping. There will not be any many-body aspects discussed here as our main
goal is just to get the matrix elements enabling a single electron to move from site to site – so-
called tight-binding parameters entering a single-electron hopping Hamiltonian. As a motivating
example we start by considering independent electrons moving in a crystal consisting of identical
atoms arranged in a simple lattice. Their wavefunctions obey the Schrödinger equation

[
− ~2

2m
∇2 +

∑

R

Vat(r −R)

]
Ψ = EΨ , (2.91)

where Vat(r − R) is the atomic potential for an atom placed at site R. Summed through the
lattices sites, the atomic potentials generate a periodic crystal potential. In the tight-binding
approximation to the problem (2.91), one assumes that the relevant states are well localized so
that the electron wavefunctions can be constructed as linear combinations of atomic orbitals.
This concept is illustrated by Fig. 16 where we construct a virtual two-dimensional crystal made
out of potential wells of circular symmetry and study the evolution of its energy levels when
reducing the lattice spacing, i.e. bringing the initially isolated atoms closer to each other. At
very large lattice spacing, the spectrum of energy levels has a discrete structure below the top of
the crystal potential, corresponding to the individual bound states of the isolated wells. Above
that threshold energy, delocalized states forming a continuum are found. As we bring the “atoms”
closer and closer, the localized states start to overlap and their interaction produces energy bands
of increasing bandwidth. The higher-energy bound states are forming bands sooner because they
have a larger spatial extent and overlap more easily. This is an analogy of the atomic orbitals in a
crystal - the valence ones form bands while the deep electron levels retain their atomic character.
It is intuitively clear that in the situation with rather well localized states (the electrons are
“tightly bound” to their atoms), the appropriate model Hamiltonian should be of the form

HTB =
∑

nR

[
εn c

†
nRcnR −

∑

n′∆R

tnn′(∆R) c†n′,R+∆R cnR

]
, (2.92)

where the operators c†nR and cnR create/annihilate an electron in the state |φnR〉 corresponding
to orbital n at site R. The first part of this tight-binding Hamiltonian HTB just counts the
energies of the occupied orbitals [c.f. the energies εα in (2.46)], the second part captures the
hopping of electrons between the orbitals located at R and R + ∆R. The amplitudes of the
hopping processes are the matrix elements of the original crystal Hamiltonian such as that of
Eq. (2.91): tnn′(∆R) = −〈φn′,R+∆R|H |φnR〉. The signs are introduced in such a way that the
hopping parameters t will be mostly positive. For the sake of brevity, we ignore spin that is
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Fig. 16: (left) Wavefunctions of the lowest eigenstates in the potential well described by the 2D potential
Vat(r) = V0 exp(−κr) r0/(r + r0) with V0 = 5 eV, κ = 0.5 nm−1, r0 = 0.5 nm. The indicated levels are
either non-degenerate or two-fold degenerate and they are labeled in analogy with atomic orbitals.
(right) Density of states for a square lattice of the above wells as function of the inverse lattice spacing
1/a. The energy is measured from the lowest eigenstate. For a large spacing (small 1/a) the wells are
practically isolated and the density of states shows discrete peaks at the energies of bound states. Blue
dotted line indicates the average potential level, the red dashed line the top of the potential. The data
to construct this figure were obtained by solving Eq. (2.91) by plane-wave expansion method.

conserved during the hopping and would come as an extra index σ together with
∑

σ. While the
values of hopping amplitudes are not known yet, one can expect that the nearest-neighbor and
possibly second nearest-neighbor ones will be most important and – in the case of more orbitals
involved – also anticipate their symmetry structure [see Fig. 17(a) and (b) for two examples].

Owing to the periodicity of the lattice, the Hamiltonian can be easily diagonalized by em-
ploying Bloch waves assembled as linear combinations of the atomic orbitals:

|nk〉 =
1√
N

∑

R

eik·R |φnR〉 . (2.93)

Here N denotes the total number of sites in the crystal and normalizes |nk〉 to unity when the
overlaps of orbitals at different sites are negligible. By inserting the consistently transformed
electron operators cnR = N−1/2

∑
k eik·Rcnk into HTB, it acquires the form with separated con-

tributions of the individual Bloch vectors k

HTB =
∑

k

∑

nn′

[
εnδnn′ −

∑

∆R

tnn′(∆R) e−ik·∆R

]
c†n′kcnk . (2.94)

For each k, it remains to diagonalize a matrix whose dimension is equal to the number of orbitals
involved (no diagonalization is thus needed in case of one relevant orbital). For the two examples
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Fig. 17: (a) Hopping processes included in the simplest tight-binding approximation for the bands
derived from s “orbitals” of Fig. 16 in a square lattice. Nearest-neighbor and next nearest-neighbor
hopping amplitudes t and t′ are indicated. (b) Hopping processes involving the p orbitals on a square
lattice. The symmetry of these states makes certain hopping amplitudes to vanish, the non-zero ones
depend on the relative orientation of the orbitals (tσ and tπ). (c) Band structure obtained for the
setup of Fig. 16 and the value a = 2 nm of the lattice parameter. The weakly dispersing bands derived
from the s1 and p1 levels are shown in detail on the left. The green dashed lines are fits by the
corresponding nearest-neighbor tight-binding dispersion relations. The band structure is plotted along
the conventional path involving Γ = (0, 0), X = (π/a, 0) and M = (π/a, π/a) points in the Brillouin
zone. (d) Band structure for a = 1nm where even the lowest level already shows a significant dispersion.
Its profile seems to be just a scaled version of that from panel (c), demonstrating the applicability of
the tight-binding scheme.

in Fig. 17(a),(b) we get

HTB =
∑

k

[
εs − 2t(cos kxa+ cos kya)− 4t′ cos kxa cos kya

]
c†kck (2.95)

and

HTB =
∑

k

(
c†pxk c†pyk

)

εp − 2tσ cos kxa− 2tπ cos kya 0

0 εp − 2tπ cos kxa− 2tσ cos kya




cpxk
cpyk




(2.96)
giving directly the dispersion relations of electrons. In the latter case, nonzero off-diagonal
elements would be generated by next nearest-neighbor hopping, nearest-neighbor pairs of px
and py orbitals are not connected due to symmetry reasons. The band structures obtained
numerically by solving the full problem (2.91) are presented in Fig. 17 and contrasted to those
resulting in nearest-neighbor tight-binding approximation. A remarkable agreement is obtained
when choosing the proper values of the few parameters (εs and t or εp and tσ, tπ), in particular
for the s band derived from the most localized bound state.

As we have just seen, the tight-binding approximation is a useful tool well capturing the
dispersion of the bands derived from localized states. Its success relies on a limited range of



40 2.3 Electronic hopping and tight-binding approximation

significant overlaps (in the sense of the matrix element of H) of those localized states, reaching
only few nearest neighbors. Our motivational example was based on a collection of weakly coupled
atoms. However, single-electron problems similar to Eq. (2.91) also arise as auxiliary problems
in ab-initio calculations within the framework of density functional theory (DFT). There exist
sophisticated approaches how to construct the local orbital bases such as maximally localized
Wannier orbitals and to extract the values of the corresponding hopping matrix elements making
the tight-binding scheme applicable in a broader context. In a way, by considering the limit
of weakly coupled atoms, we obtain hints about the symmetry/structure of the corresponding
tight-binding model, a realistic DFT calculation then fills in the actual values of the parameters.

After the initial exposition of the tight-binding approach, we will now focus in more detail on
the symmetry properties of the tight-binding matrix elements tnn′(∆R) = −〈φn′,R+∆R|H |φnR〉.
for transition metal compounds. The relevant ones are those connecting an oxygen ion and
a transition metal ion (i.e. p and d orbitals), and two transition metal ions (only d orbitals
involved). A general approach of their symmetry reduction to as few parameters as possible
under the assumption of spherically symmetric atomic wavefunctions9 was developed by Slater
and Koster [33]. Let us write down the matrix element tnn′(∆R) explicitly

tnn′(∆R) = −
∫
φ∗n′(r −∆R)

[
− ~2

2m
∇2 +

∑

R′

Vat(r −R′)

]
φn(r) d3r . (2.97)

We can ignore the on-site elements (∆R = 0), these can be incorporated into the local level
structure by renormalizing the energies εn. The basic trick is to use the fact that φn(r) and
φ∗n′(r−∆R) are eigenstates of the atomic Hamiltonian − ~2

2m
∇2 +Vat(r) or − ~2

2m
∇2 +Vat(r−∆R),

respectively. This enables a decomposition of the integral in (2.97) into three contributions

tnn′(∆R) = −
∫
φ∗n′(r −∆R)

[
1
2
Vat(r) + 1

2
Vat(r −∆R)

]
φn(r) d3r (2.98)

− εn + εn′

2

∫
φ∗n′(r −∆R)φn(r) d3r −

∫
φ∗n′(r −∆R)

∑

R′ 6=0,∆R

Vat(r −R′)φn(r) d3r .

We will study just the contribution on the first line and analyze its symmetry for p-d and d-d
orbital pairs and spherically symmetric Vat. The contributions on the second line – orbital
overlaps and a sum of so-called three-center integrals – are usually neglected. In principle, they
can be assumed to renormalize the tight-binding parameters.

To evaluate the two-center integrals 1
2

∫
φ∗n′(r − ∆R) [Vat(r) + Vat(r −∆R)]φn(r) d3r one

observes that the term in the bracket has a rotational symmetry with ∆R being the rotational
axis. It is therefore convenient to take the decomposition of the orbitals into spherical harmonics

φn(r) = f(r)
+l∑

m=−l

cmYlm(ϑ, ϕ) (2.99)

and rotate the angular part to the new set of spherical coordinates ϑrot, ϕrot, where the polar
angle ϑrot is measured from ∆R. This operation amounts to a linear transformation of the set
of coefficients cm. After the transformation, the expression for the two-center integrals contains
azimuthal integrals of the type

∫
Y ∗l′m′(ϑ′rot, ϕrot)Ylm(ϑrot, ϕrot) dϕrot where we have to distinguish

the polar angles ϑ′rot and ϑrot since the origin of the spherical coordinate system differs for the

9This means wavefunctions of the form (common radial part) × (linear combinations of spherical harmonics)
such as the case explored in Sec. 2.1.
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Fig. 18: Illustration of the basic Slater-Koster integrals for p-d and d-d situation. The main rotational
axis is z pointing upwards. (a) (pdσ) bonding of the in-bond oriented orbitals is the strongest link
between p and d orbitals. (b) (pdπ) bonding is weaker and due to the phases of the spherical harmonics,
it comes with an opposite sign to (pdσ). A real-orbital example is shown on the right – the integral
between p orbital perpendicular to the bond and a matching d orbital is just equal to Slater-Koster
(pdπ), here including the sign. (c) Strongest (ddσ) bonding between two d orbitals. (d) Weaker (ddπ)
bonding with the same sign issues as (pdπ). The integral between the two dzx orbitals shown in the
right example is equal to (ddπ). (e) (ddδ) bonding and a real-orbital example with the same value of
the integral.

two orbitals. The azimuthal angle ϕrot can be chosen as common. The above integrals vanish
for m′ 6= m due to the rotational symmetry of the spherical harmonics. The result can thus be
expressed as a linear combination of Slater-Koster integrals (l1l2m) that are defined, following
Eq. (2.98), as the two-center integrals (l1l2m) = 1

2

∫
α∗(r−∆R) [Vat(r) + Vat(r −∆R)] β(r) d3r

with β(r) = f(r)Yl1m(ϑ1rot, ϕrot) and α(r) = f(r)Yl2m(ϑ2rot, ϕrot). The values of l1,2 = 0, 1, 2, . . .
are specified by the conventional letters for atomic orbitals s, p, d, . . . and those of m = 0, 1, 2
by σ, π, δ, following the chemical bonding nomenclature. Note that the values for +m and −m
are identical.

The basic set of Slater-Koster integrals needed for the analysis of hoppings in transition
metal oxides is presented in Fig. 18. The main contribution to the Slater-Koster integrals will be
presumably collected near the central area of the bond. Taking into consideration the angular
distribution of the spherical harmonics, it may be expected that σ bonding is in general stronger
than π bonding and that is stronger than δ bonding. One can also anticipate the signs: Since
Vat is negative, the Slater-Koster integral typically has a negative sign when the closest lobes
of the two orbitals have equal signs (or same complex phase). Accordingly, the indicated σ
and δ Slater-Koster integrals will be probably negative while the π ones positive. Following
our definition, the hopping parameters tnn′ will be of opposite signs, for example the hopping t
between s orbitals is positive which is indeed observed in Fig. 17. The above “rules of thumb”
are useful when inspecting the actual hopping channels between ions as we will do soon. To have
a more intuitive notation, we incorporate the anticipated signs into the newly introduced labels
for hopping parameters:

tpdσ = −(pdσ) , tpdπ = +(pdπ) , tddσ = −(ddσ) , tddπ = +(ddπ) , tddδ = −(ddδ) (2.100)

that will be used below and that are not always following Eq. (2.98). In this convention the
hopping parameter will be taken positively if orbital lobes of the same sign “meet” on the bond.
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Fig. 19: Examples of hopping channels contributing to nearest-neighbor hopping between two transition
metal ions in the case of 180◦ metal-oxygen-metal bonds (a,b,c) and 90◦ bonds (d,e,f). The indicated
hopping amplitudes use the quantities defined by Eq. (2.100). The insets show the geometry of the
connected octahedra and label the transition metal ions by M1,2. The setup of the axes for the 90◦ case
is identical to Fig. 7(b),(c) (z-bond). There are a few more contributing options that were not shown:
(a) Connection of two dzx orbitals via pz, (b) connection of two d3z2−r2 orbitals via px, (c) situation
with interchanged d orbitals, (d) hopping between dzx and dyz mediated by pz of the front oxygen of
the metal2-oxygen2 plaquette.

When dealing with hoppings in transition metal compounds, we most frequently encounter
either 180◦ metal-oxygen-metal bonds or 90◦ ones (see e.g. Fig. 1). The various options that we
need to consider when connecting two transition metal ions are summarized in Fig. 19. A crucial
observation is that eg orbitals are even when mirrored by any plane containing the bond so that
they can only couple to oxygen p orbitals via σ-bonding, while t2g orbitals have an odd-parity
mirror plane so that only the π-bonding to oxygen orbitals is possible. As a consequence, the
180◦ bond geometry enables only separate t2g–t2g and eg–eg hoppings, t2g–eg mixing is absent.
For the 90◦ bond geometry, on the other hand, the t2g–eg mixing channel is the dominant one and
eg–eg hopping is forbidden by symmetry. Most of the channels depicted in Fig. 19 correspond
to second-order processes involving two successive p-d hoppings. We will now go through the
individual cases and inspect the resulting d-d hoppings.

We start with the 180◦ bond and t2g hopping channel. According to Fig. 19(a) showing an
x-bond situation, a pair of dxy orbitals becomes connected through the mediating py orbital. The
same type of connection, now via pz orbital, can be found for two dzx orbitals. The remaining
t2g orbital dyz is inactive on an x-bond. To derive the effective d-d hopping, we consider the
M1–O–M2 bond in the initial configuration dm–p6–dn corresponding to a completely filled va-
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lence shell of O2−. The process of hopping from the transition metal ion M1 to M2 needs to start
with a p-d hopping from the oxygen to M2. This creates a virtual configuration dm–p5–dn+1 with
the excitation energy ∆pd (to be discussed in detail later in Sec. 2.4) that can be relaxed when
another electron moves from M1 to the oxygen and fills the hole in p orbitals. The final configu-
ration is dm−1–p6–dn+1 with one electron moved from M1 to M2. Thinking within the framework
of the second-order perturbation theory, the amplitude of the whole process can be estimated as
−tO→2t1→O/∆pd which incorporates the amplitudes of the two successive hoppings. The corre-

sponding term in the effective d-d hopping Hamiltonian then reads as (+tO→2t1→O/∆pd)c
†
2c1. The

extra sign originates in reordering the electron operators that appear in the sequence (p†c1)(c†2p)
when following the partial hoppings in the perturbation term. Here p, p† are electron operators
corresponding to the participating p orbital. A similar process can be constructed when working
out the 2→ 1 direction of the d-d hopping. Taking into account also the opposite signs of the
partial hopping amplitudes observed in Fig. 19(a), we get for the t2g hopping Hamiltonian on the
x-bond

H(x)
ij = −(t2pdπ/∆pd)(d

†
xydxy + d†zxdzx)ij + H.c. (2.101)

Hopping Hamiltonians for the other bond directions can be obtained by cyclic permutation.
The situation is more complex for eg orbitals on a 180◦ bond, where all possible combinations

of eg orbitals are connected. Shown in Fig. 19(b), (c) are two options, there is in addition a
connection between two d3z2−r2 orbitals. Evaluating the effective d-d hopping in this case, we
arrive at the bond Hamiltonian

H(x)
ij = −

t2pdσ
∆pd

(
d†3z2−r2 d†x2−y2

)
i


 +1

4
−
√

3
4

−
√

3
4

+3
4




d3z2−r2

dx2−y2



j

+ H.c. (2.102)

For a y-bond the hopping matrix is almost the same, the only change is an opposite sign of the
off-diagonal elements as a consequence of the opposite signs of the dx2−y2 orbital lobes pointing
in x and y directions. For a z-bond we have essentially the situation from Fig. 18(a) giving

H(z)
ij = −(t2pdσ/∆pd) (d†3z2−r2d3z2−r2)ij + H.c. The dx2−y2 orbital is completely disconnected in that

case. The partial hopping amplitude tpdσ is typically two times stronger than tpdπ which makes
the eg hopping more powerful. A well known example of this type of hopping is the motion of
holes in the CuO2 planes of high-Tc cuprates. Residing in the planar dx2−y2 orbital, they can
fully utilize the geometry of the square lattice with Cu–O–Cu bonds.

Moving on to the 90◦ bond geometry and t2g orbitals, we find that the hopping channel via
oxygen is quite similar to the 180◦ case, with two orbitals out of three being active. However,
the path is bent now which results in an interchange of t2g orbitals. Specifically, for the bond
along 1√

2
(y − x) direction presented in Fig. 19(d) [the geometry coincides with the z-bonds of

Fig. 7(b),(c)], we get

Hij = +(t2pdπ/∆pd)(d
†
zxdyz + d†yzdzx)ij + H.c. (2.103)

with the two contributions being mediated separately by the two oxygen ions in the M2O2

plaquette. In this geometry there might also be a significant direct overlap of dxy orbitals as
shown in Fig. 19(e). For the other two t2g orbitals, a direct hopping is also possible but weak
because its matrix element contains 1

2
(ddπ) while the dxy orbital uses stronger 3

4
(ddσ). The

orbitals active in oxygen-mediated hopping and direct hopping are thus basically complementary.
As before, we can get the t2g hoppings for the other bond directions by cyclic permutation.

Finally, let us consider the t2g–eg hopping on a 90◦ bond. As demonstrated in Fig. 19(f), the
necessary orientation of the p orbitals is only compatible with the dxy orbital. When connecting it
to the eg orbital, an interesting quantum interference effect occurs. For the d3z2−r2 orbital the two



44 2.4 Mott limit and interactions emerging from residual hopping

hopping channels via front and rear oxygen ions come with the same total phases accumulated
from the partial p-d hoppings so that they add up to

Hij = +(tpdσtpdπ/∆pd)(d
†
3z2−r2dxy + d†xyd3z2−r2)ij + H.c. (2.104)

However, for the dx2−y2 orbital with alternating signs of its lobes, the amplitudes of the two
channels add to zero and dx2−y2 is thus disconnected. The Hamiltonians for the other bond
directions may be obtained by cyclic permutation but in this case a subsequent decomposition
of the resulting d3x2−r2 and d3y2−r2 eg orbitals into the conventional dx2−y2 and d3z2−r2 pair is
needed.

2.4 Mott limit and interactions emerging from residual hopping

Having explored both the physics of the individual ions as well as the way how to connect them
via electronic hopping, we are now in position to assemble all together in a form of so-called
multiorbital Hubbard model

H =
∑

i

Hion(i) +
∑

〈ij〉

Hhopping(ij) . (2.105)

The first sum goes through the lattice sites and collects the intra-ionic contributions Hion =∑
ασ εαnασ +HCoul +HSOC that we have thoroughly analyzed in Secs. 2.1 and 2.2. The second

sum runs through the bonds (quite often nearest-neighbor ones but further neighbors can be
included if needed) and activates the various hopping channels as introduced in Sec. 2.3.

At a closer inspection the problem defined by Eq. (2.105) looks intricate and it indeed is.
Without HCoul we would be just facing a band-structure calculation on a single-electron level,
readily performed by an application of the Bloch theorem. However, electron correlations due
to two-body interactions contained in HCoul, that we assume to be strong, make it a genuine
many-body problem.10 We have already successfully handled the electron correlations when
diagonalizing the individualHion which was a relatively simple task due to a limited Hilbert space
of an individual ion with given number of electrons. This is no more true for a lattice of connected
ions since the Hilbert space dimension grows in a terrifying way – essentially exponentially with
the number of lattice sites. Moreover, the base for this exponential is not small due to several
orbitals involved and combined with spin-1

2
. When resorting to a fully numerical diagonalization,

even the huge computational power easily accessible nowadays enables to exactly treat clusters
with a few transition metal ions only.

One way out is to simplify the model by identifying the relevant ionic states – typically the
low-energy multiplet states – and formulate an effective model in terms of those. The actual model
may be obtained, for example, by getting rid of the high-energy states in a perturbative manner.
A proper choice of the elementary objects for the model and processes to be included can make
the physics behind the particular material more transparent and guide further approximations.
Even though the results may be qualitative only, the insights gained are sometimes more valuable
than a quantitative treatment of the original Hubbard model by some complex numerical method.

Our focus is on models with localized degrees of freedom appearing as effective models for
undoped Mott insulators, the canonical example being a spin model. In the introductory sec-
tion 1.2 we took a very simplistic approach to the problem of its emergence. The aim of the
present section is to put it on a bit more solid ground to get ready for a derivation of “realistic”
models in Secs. 3 and 4.

10In principle, there are also inter-ionic interactions of two-body character that could be included in the model,
such as Hubbard repulsion of the electrons residing at neighboring ions, but these are only needed in special
situations and we do not need to address them in our cases of interest. Consequently, the only source of correlated
behavior of electrons in our models will be the intra-ionic electron-electron interactions in HCoul.
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