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Using the tight-binding method, the valence band structures and densities of states for 
C, Si, Ge, GaAs, and ZnSe are calculated. Very good agreement is obtained with other cal- 
culations when all nearest- and one second-nearest-neighbor interactions are included. The 
effects of the various interactions on the density of states are discussed. 

Mit der ,,tight-binding“-Methode werden die Valenzbandstrukturen und Zustandsdichten 
fur C, Si, Ge, GaAs und ZnSe berechnet. Sehr gute Ubereinstimmung mit anderen Rech- 
nungen wird erreicht, wenn alle Wechselwirkungen mit nachsten und nur eine Wechselwir- 
kung mit zweitnachsten Nachbarn berucksichtigt werden. Die Einflusse verschiedener 
Wechselwirkungen auf die Zustandsdichte werden diskutiert, 

1. Introduction 

The tight-binding approach to the problem of the electronic energy levels in 
solids is intuitively very appealing. The method provides a real space picture 
of the electronic interactions which give rise to the particular features of the 
energy band structure, density of states, etc. This is extremely useful in studies 
of how these features change when the electronic configuration is altered. The 
tight-binding method is most practical when only a few types of electronic 
interactions are dominant. In  such a case an adequate description of the system 
of interest can be obtained by specifying a small number of interaction param- 
eters. In  this way a qualitative description of the valence bands can be obtain- 
ed [l to 81 for niaterials in the diamond, zincblende, and other structures. 

In  this paper we show that a tight-binding method using a few interaction 
parameters gives accurate results for the valence bands of the diamond and 
zincblende crystals C, Si, Ge, GaAs, and ZnSe. The tight-binding method we 
use is equivalent to that of Slater and Koster [GI. It can also be regarded as 
a more complete version of the Weaire and Thorpe [a] model in which inter- 
actions between more distant directed orbitals are included. It is necessary to  
include these extra interactions for a more complete description of the valence 
bands. I n  Section 2 we give a brief review of the method and consider the effects 
of the various interactions on the density of states. We show that the inclusion 
of all the possible nearest-neighbor interactionsl) between s- and p-tight-binding 
states is not sufficient to  broaden the “p-like’’ bands along all symmetry direc- 
tions. The resulting error in the energies is about 1 eV and occurs niostly for 

1) By nearest-neighbor interactions we mean interactions of orbitals on nearest-neighbor 
atoms. 
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states near the surface of the Brillouin zone. With the inclusion of only one 
second-nearest-neighbor interaction, the accuracy is greatly improved and the 
resulting valence band structures and densities of states exhibit all the structures 
obtained in other calculations. 

The band structures, densities of states, and interaction parameters for C, Si, 
Ge, GaAs, and ZnSe are discussed in Section 3. The dependence of the energy 
levels, along several symmetry directions and a t  some symmetry points, on the 
interaction parameters are also given in Section 3. These expressions are useful 
for obtaining information about the interaction parameters. 

2. Tight-Binding Method 

In  diamond and zincblcnde crystals, every atom is tetrahedrally coordinated 
and there are two atoms in the primitive cell. For each tight-binding basis 
function centered on these atoms, two Bloch functions can be constructed. For 
example, for a tight-binding basis function b ( r )  we have the two Bloch functions 

and 

where t- is the vector joining the two atoms in the primitive cell and the sub- 
scripts on b refer to the atoms in the primitive cell. I n  the diamond structure 
crystals we take bo(r)  = b1(p ) ,  but in the zincblende crystals the two functions 
are different. 

In  order to have 
( y t ( k  r)l W , ( k  r ) )  = dty; i, i = 0, 1 3 (3) 

we must require that the tight-binding functions on different atomic sites be 
orthonormal : 

@,(r - R,)I b,(r - R,  - 2)) = 0 3 

(bdr) l  W)) = 1 * 

(4) 

(5)  

These conditions can always be accomplished by a method due to Lowdin 
[6, 91 without affecting the symmetry of the basis functions. 

The basic problem of the tight-binding method is to find the matrix elements 
of the Hamiltonian between the various basis states. We will consider here 
only the case where we have only one set of s-, pz-, pu-, and p,-orbitals a t  each 
atomic site. We will denote these by so, xo, yo, zo or s,, xl, y,, z1 where the sub- 
scripts as before refer to the atonis in the primitive cell. The Hamiltonian matrix 
elements between an s- and a p-state on the same atom or two different p-states 
on the same atom are zero because of symmetry in diamond and zincblende 
crystals. The matrix elements between these basis functions have been derived 
in reference [6]. The 8 x 8 secular determinant representing all possible nearest- 
neighbor interactions between the tight-binding s- and p-orbitals centered on 
each atom in the crystal is 
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For diamond structure crystals Eso = E,, Ep, = Ep,, and Vsop = Vs,p, and from 
this point we will drop the subscripts for these crystals. The functions go, g,, g,, 
and g3 in (6) are given by 

k k k, . k ,  . k3 
go(k) = cos z - k, cos n 2 cos z 3 - i sinn - sin TC - sin TC -, ( 7 )  2 2 2 2 2 2 

g,(k) = - cos 7~ - k, s inx  2 k .  s m n 3  k + i sinn - k ,  cosn - k2 cos 7t -, k3 ( 8 )  2 2 2 2 2 2 

g,(k) = - sin z - kl cos z 2 k sin . n - k3 + i cos n - k, sin . TC - k,  cos z -, k3 (9) 

(10) 

2 2 2 2 2 2 

k,  . k k3 k, k ,  . k3 g3(k) = - sin n - sin 7c 2 cos z -+ i cos z - cos TC - sin n -, 
2 2 2 .  2 2 2 

where k = (2n/a) (kl ,  k,, k3). 

to those of Slater and Koster [6] by 
For diamond structure crystals, the parameters appearing in (6) are related 

E, = Ex,. (000) 3 

v z x  = 4 E x , x  (T TI , 
v s p  = 4vs,x (?%TI * 

(11) 
1 1 1  1 Es = Es,s (000) 3 

8,s = 4Es,s (T -T TI , 
8, = 4Ex, ,  (++$I 9 

1 1 1  

Before describing the total interaction between s- and p-states, it is interesting 
to look at  each one separately. If we set the s-p interaction parameters VsOp 
and Vs,p equal to zero, the 8 x 8  matrix (6) decouples into a 2 x 2  and a 6 x 6  
matrix. The energy eigenvalues of the 2 x 2 matrix, which describes the s-states, 
are given by 

for diamond structure crystals. Although this expression is very simple, it 
nevertheless provides a very good description of the lowest valence band in 
these crystals. Specifying the width of the band (which is about 3.5 to  4.0 eV 
in Si and Ge) determines the band structure to within a few tenths of an eV 
throughout the Brillouin zone. The largest errors (compared to  calculations 
based on the empirical pseudopotential method (EPM)) occur along the A- 
direction and along the 2-direction which runs between the symmetry points 
X = (2n/a) (1, 0, 0) and W = (2n/a) (1, $, 0) of the Brillouin zone. Along this 

E ( k )  = Es i ~ s s l 9 o ( W l  (12) 
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X U,K C r 
k v  

Fig. 1. Band structure and density of states of s-states for diamond structure crystals 

direction the two bands are degenerate (by symmetry) and have no dispersion. 
The second valence band in the group IV crystals is p-like at  I’ and (12) does 
not therefore provide a valid description for this band. The band structure and 
density of states associated with the tight-binding s-like bands is shown in 
Fig. 1. The dip in the density of states occurs near the line X + W in the 
Brillouin zone. For V,, < 0 the lower-energy band is bonding a t  I? and the 
higher band is antibonding. For B,, > 0 the order of the bonding-antibonding 
states is reversed. For the zincblende crystals the analog of (12) is 

whereas as a result of inversion symmetry the two bands were degenerate a t  X 
in the diamond structure crystals and a gap of magnitude lEa0 - E,J opens up 
a t  X for the zincblende crystals. The maximum of the first band and the mini- 
mum of the second one still occur a t  X. But unlike the case of the group IV 
crystals the bands approach X with zero slope, and this results in a sharp peak 
in the density of states (not shown) for states near X. Except for this structure 
the s-band density of states in the group IV and zincblende crystals are very 
similar to each other. 

The band structure and density of states associated with the six p-states of 
the group I V  crystals is shown in Fig. 2 for P,, = 0, VzU = 8.8, and Ep = 0. 
The sharp rise and fall of the curve near threshold occurs at; zylrl and is 
very similar to the zf”” edge observed in the density of states of a 
number of diamond and zincblende crystals [ lo  to  121. As in the case of the 
s-bands there is no dispersion along the line joining the points X and W of the 
Brillouin zone, and the dip in the density of states corresponds to these states. 
The overall shape of the curves for the s- and p-states are similar in the region 
near the density-of-states minimum. For the zincblende crystals the band 
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Fig. 2. Band structure and density of states of p-states for diamond structure crystals 

structure and density of states for the p-states is similar to  that of Fig. 2.  The 
maximum of the lower three bands and the minimum of the upper three bands 
occur at X and are separated by a gap. The zero slope of the bands at  X gives 
rise, as in the case of the s-states, t o  a sharp structure in the density of states 
(not shown). Except for this structure the densities of states of the p-bands in 
the group 1V and the zincblende crystals are very similar as may be expected. 

Sometimes it is more convenient (see, e.g., surface calculations [ 7 ] )  to use 
tight-binding orbitals directed along the bond directions. The parameters 
which appear in this approach can be easily related to s-p interaction parameters. 
This can be done by taking the Hamiltonian matrix elements between the di- 
rected sp3 orbitals shown in Fig. 3. The results for diamond structure crystals 
in Hirabayashi’s [7] notation are: 

(14) 
(15) 
(161 
(17) 
(18) 

(19) 

y1 = (914 H I@> = + (Es + 3E,) > 

y2 = (9111 H 1912) = f (Es - Ed > 

y3 = (9111 H 1918) = A (T’SS - 3v,, - GJ’,!,l - 6 J 7 s p )  , 
y4 = (9121 H 1918) = A ( V s s  + VZ, + 2J7,.Y - 2 8 , )  , 
y5 = ($%I H I& = $ ( r a s  + v,, - 2J’zg + 2VSd , 
ye = (q2l H Iq,) = ( P S S  - 3 V Z Z  + 2VZ, + 2V8,) * 

The parameter y1 appears in the diagonal matrix elements and can be taken 
equal to zero. The parameters y2 and y3  are the same as the parameters Vl and 
V2 of Weaire and Thorpe [ 2 ] ,  and from Fig. 3 i t  can be expected that they 
represent the most important interactions. The properties of a model Hamil- 
tonian based only on these two types of interactions has been studied in detail 
by Weaire and Thorpe [ a ,  131 and has been employed in a number of calculations 
involving crystalline polytypes of Si and Ge [a]. These calculations show that 
the tv  o-parameter model gives a relatively good description of the lower “s-like” 
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Fig. 3. Directed sp3 orbitals on two adjacent tetrahedrons. The dif- 
ferent possible interactions of the orbitals on the nearest-neighbor 

atoms are given in Section 2 , ? Fin. 3. Directed S D ~  orbitals on two adiacent tetrahedrons. The dif- " 
ferent possible interactions of the orbitals on the nearest-neighbor 

atoms are given in Section 2 

valence bands, but gives a poor description of the higher p-like bands which 
appear as 8-functions in the density of states. The inclusion of the other inter- 
actions broadens the 8-functions and gives a better description of the valence 
bands. 

For zincblende crystals we need three extra parameters to describe the 
overlaps corresponding to nearest-neighbor s-p interactions. The interaction 

The fact that the interactions represented by a4 and p4 are different is caused 
by the lack of inversion symmetry. 

It can be shown that independent of the choice of the interaction parameters 
yl,  ..., y s  (diamond structures) and a1 ,..., a6, PI, ..., p4 (zincblendes), the bands 
have no dispersion along the symmetry direction Z which goes through the 
points X = (2n/a)  (1, 0, 0) and W = (2n/a)  (1, $, 0) of the Brillouin zone. 
Other calculations such as those based on the empirical pseudopotential method 
(EPM) show [lo], however, a dispersion of ~1 eV between X and W for the 
upper two valence bands. This dispersion is reflected in the density of states 
where each of these points gives rise to  a characteristic and well resolved peak. 
To obtain this result in the tight-binding calculation it is necessary to include 
a t  least one second-nearest-neighbor interaction. Fig. 4 shows the density of 
states of a crystal such as Ge with and without second-nearest-neighbor inter- 
actions. For the nearest-neighbor calculation the parameters used were (in eV) : 
(EP - E,) = 8.41, V,, = -6.78, V,, = 2.62, V,, = 6.82, and VaP = 5.31. The 
second-nearest-neighbor interaction we have used (in Fig. 4) arises from the 
overlap of a p,-orbital a t  the origin with a p,-orbital separated by a lattice 
vector of the type (0, *+, k+) a. Its effect is to change the diagonal matrix 
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Ge 

energy (el/) - 
Fig. 4. The density of states (in arbitrary anits) of Ge with an without second-nearest- 
neighbor interaction. The second-nearest-neighbor interaction splits the energies a t  X and 
W and gives rise to  extra structure in the density of states. --- Nearest-neighbor 

interaction, __ one second-nearest-neighbor interaction 

elements to (x,] H Ix,) + E, + U,, cos X., cos k,, etc. for diamond structure 
crystals. The interaction U,, is denoted by 4E,,(Oll) in [B]. The interaction 
paranieters when both nearest- and second-nearest interactions were used 
(Fig. 4) are: (E ,  - E,) = 8.41, V,, = --6.78, V,, = 1.62, V,, = 6.82, V,, = 
= 5.31, and U,, = -1.0 (eV). The resulting density of states in Fig. 4 shows 
the separate structures arising from the points X and W. These structures 
coalesce into a single peak when U,, is set equal to  zero. It should be pointed 
out here that not all second-nearest-neighbor interactions are useful in broaden- 
ing the bands along Z. Interactions between two s-states or between s- and 
p-states separated by a primitive lattice vector have no effect on the dispersion 
along Z which is affected mainly by second-nearest-neighbor interactions 
between p-states, the largest [B] one being U,%. 

3. Results for C, Ge, Si, GaAs, and ZnSe 
Since there is not sufficient information on the valence bands of C, we have 

used only nearest-neighbor interactions in our calculations on C. The para- 
meters were obtained by fitting to the results of a variational calculation [14], 
and they are shown in Table 1. The energy eigenvalues are compared to  other 
calculations in Table 2 and the resulting band structures and densities of states 
are shown in Fig. 5. Table 2 shows good agreement between the simple tight- 
binding calculation and the variational calculations [ 141 €or the valence bands 
of C. The results are also very similar to  those obtained from an APW [1512) 
calculation. The conduction bands are not well reproduced by the simple tight- 
binding method except a t  I7 where the splittings were fitted. 

2) This paper gives many references to  earlier theoretical and experimental work on C. 
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tight- 1 DVM 
-binding 1 [14] 

~~- 

0 
-19.6 -19.6 

6.0 ~ 6.0 
10.8 I 10.8 

-15.2 1 -14.5 
-9.8 I -11.7 
-2.6 -2.4 

-11.6 -11.6 
-5.3 -5.3 
-2.35 - 
-1.83 , - 

T a b l e  1 

Tight-binding interaction parameters (in eV) for C, Si, and Ge. The parameter U,, repre- 
sents a second-nearest-neighbor interaction. The parameter E, determines the zero of 

energy and is arbitrary 

_ ~ _ _  
tight- 

binding 

0 
-12.16 

3.42 
4.10 

-9.44 
-7.11 
- 1.44 
-7.70 
-2.87 
-3.84 

1 -4.32 

~ ~ ~ ~ ~ _ _ _ _ _  

C 

Ge 

7.40 10.25 
7.20 ~ ~ 5.88 
8.41 5.31 

3.0 8.30 - 
1.71 , I  7.51 1 -1.46 
1.62 6.82 - 1.0 

T a b l e  2 
Comparison of the energy eigenvalues of C, Si, and Ge at some symmetry points in  the 
Brillouin zone. The energies in  (eV) are measured relative t o  the top of the valence bands 

at I'z5* 

state 
~~ 

EPM 
P61 

~~~ __ 

0 
-12.16 

3.42 
4.10 
9.57 

-6.98 
-1.23 
-7.70 
-2.87 
-3.74 
-4.46 

Ge 

tight- 
binding 

0 
--12.57 

3.24 
0.99 

-10.30 
-7.52 
-1.60 
-8.60 
-3.30 
-3.80 
-4.29 

~~ 

-____ 
EPM 
~ 7 1  

0 
-12.57 

3.24 
0.99 

-10.30 
-7.42 
-1.44 
-8.56 
-3.20 
-3.80 
-4.29 

Fig. 5 .  Band structure and density of states of diamond 
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- 
L, 
a - -2 
7 

- 

2 -4 - 
-6 

-8 

-10 

-72 

- 

- 

- 

- 

1.2 0.8 0.4 O L A T  n X U,K C r 
k- -densifJ/ o f  states (stateslev atom) 

Fig. G. Tight-binding band structure and density of states of Si as compared to  the results 
obtained from empirical pseudopotential calculations [IG]. __ Tight binding, - - - 

EPAI 

For Si and Ge we have used one second-nearest-neighbor interaction in 
addition to  the nearest-neighbor interactions in the calculations. The nature of 
these interactions was discussed in Section 2.  The interaction parameters for Si 
and Ge are listed in Table 1 and the eigenvalues a t  some symmetry points in the 
Brillouin zone are compared to the EPM values (for Si see [16], for Ge [17]) in 
Table 2.  The corresponding band structures and densities of states are shown 
in Fig. 6 and 7 and compared to those obtained from recent EPM calculations 
[ 16, 171 involving non-local (angular-monientum-dependent) potentials. The 
agreement in all cases is within a few tenths of an eV for the valence bands, but 
for the conduction bands the method is not as successful. For the sake of com- 
pleteness we give in Tables 3 and 4 the interaction parameters for C, Si, and 

Fig. 7 .  Tight-binding band structure and density of states of Ge as compared to  the results 
obtained from empirical pseudopotential calulations. [17]. __- Tight binding. - - - 

EPM 
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f O -  

1 - 2 -  - 
1 
u - -4- 
\ 
P 
? - 6 -  

-a 

-10 

-72 

'0 

T a b l e  3 
Interaction parameters (in eV) appropriate for C, Si, and Ge when second- 
nearest-neighbor interactions are ignored. The parameter Es  is arbitrary 

- 

- 

- 

- 

c 
Si 
Ge 

7.40 
7.20 
8.41 

VS, 

-15.2 
-8.13 
-6.78 

T a b l e  4 
Interaction parameters (in eV) between directed orbitals for C, Si, and Ge. 
These parameters are related to  those in Table 3 through the equations 

given in Section 2. The parameter yl can be chosen arbitrarily 
- 

I 1/2 I Y3 1 Y6 1 YE 

I j I I 
C - -1.85 -8.47 -1.01 -0.52 0.81 

Ge -2.10 -5.46 -0.07 -0.45 0.60 s i  1 ~ -1.80 -6.13 ~ -0.11 ~ -0.51 ~ 0.57 

Ge if only nearest-neighbor interactions are used. These tables show that the 
strength of nearly every interatomic interaction decreases as we go from C to 
Si to Ge. 

Dresselhaus and Dresselhaus [5] have used a tight-binding Hamiltonian, 
related to that of Slater and Koster 161 by a unitary transformation, to make 
a detailed study of the valence and conduction bands in Si and Ge. Twelve first- 
and second-nearest-neighbor interactions were used to fit the main optical gaps 
and effective masses. The magnitude of the second-nearest-neighbor inter- 
actions are small compared to  the first-nearest-neighbor interactions which 
are consistent with the values we have obtained by fitting the valence bands of 

Fig. 8. Tight-binding band structure and density of states of GaAs compared to  the results 
of EPM calculations [18]. -__ Tight binding, - - - EPM. (Read L3pV instead of L3") 
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i i ZnSe 
K ,  - 1 tr? 

Fig. 9. Tight-binding band structure and density of states of ZnSe compared to  the results 
of EPM calculations [19]. __ Tight binding, - - - EPM 

Si and Ge. We find that in order to obtain more accurate conduction bands 
we need to use more second-nearest-neighbor interactions, but as our results 
show, a few parameters are sufficient to give an accurate description of the 
valence bands and an approximate description of the first few conduction bands. 

In  the case of the zincblende crystals GaAs and ZnSe we have only used 
nearest-neighbor interactions for convenience. A second-nearest-neighbor inter- 
action between the Ga or Zn p-states, similar to the one used for Si and Qe, is, 
however, necessary to broaden the upper two valence bands. The band struc- 
tures and densities of states for GaAs and ZnSe are shown in Fig. 8 and 9 and 
compared to non-local (angular-inonientum-dependent) EPM calculations [ 18, 
191. The interaction parameters are listed in Tables 5 and 6. The largest error 

T a b l e  5 
Interaction parameters (in eV) for GaAs and ZnSe. The four intra-atomic parameters E,,, 
E,,, Ep,, and Epl give information only on the relative energy differences between the tight- 
binding s- and p-functions. The subscripts 0 and 1 refer to  As (or Se) and Ga (or Zn), 

respectively 

Eye ~ Es, j Ep, Ell, ' Vs, ! &,p 1 Vslp 1 VZS 1 VZY 
_ _ ~ _ _  - - - __ ~ _ _ ~  

GaAs ' 6.01 -4.79 I 0.19 -7.00 1 7.28 3.70 0.93 4.72 
ZnSe I 1 8 . 9 2  1 -0.28 1 0.12 ~ ;:i -6.14 ' 5.47 4.73 1 0.96 1 4.38 

in the band structures occur for the states denoted by Cp'". The tight-binding 
results are actually much closer to older E P M  calculations which used local 
pseudopotentials resulting in upper valence bands which are narrower. Ultra- 
violet and X-ray photoeniission spectra, however, reveal a larger width for 
these bands than those indicated by local pseudopotentials, and this has been 
one reason for the use of non-local psendopotentials. The energy eigenvalues a t  
some symmetry points in the Brillouin zone are given in Table 7 and compared 
to the EPM values. For inore accurate conduction bands second-nearest- 
neighbor interactions, especially those between s- and p-states, need to be 
included. 
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Tab le  6 

parameters are related to those in Table 5 through the relations given in Section 2 
Tight-binding parameters (in eV) between directed orbitals for GaAs and ZnSe. These 

~- ~ _ _ _ _ _ _ _ _ _ _  

a2 ~ A I a3 = A 1 a4 1 A ~ a5 ~ % 

GaAs 1 -1.36 ~ 22: 1 -1.55 1 1 -  -2.35 1 -4.44 1 -0.92 ~ -0.03 ' -0.28 0.66 
ZnSe -2.14 -2.26 -1.93 -4.12 1 -0.51 -0.32 ~ -0.23 ~ 0.62 

The tight-binding method allows it simple calculation of the s- and p-character 
of the valence bands and it is interesting to see how close to  ideal sp3 they are. 
We have therefore computed the average s- and p-components of the wave 
functions for the valence bands. We find the top two valence bands to be 
conipletely p-like in character in all five crystals. The differences in the s- and 
p-characters occur mainly for the first two valence bands and these are shown 
in Table 8. The average of the s- and p-electrons in the four valence bands of 
C, Si, and Ge are, C :  1.25 s, 2 . 7 5 ~ ;  Xi: 1.4 s, 2.6 p ;  Ge: 1.5 s, 2.5 p. The ratio 
of the number of s- to  p-electrons is0.45 for C, 0.54 for Si, and 0.6 for Ge. Carbon 
is therefore as expected the closest to  the ideal ratio of 0.333. In  GaAs and 
ZnSe the first valence band is s-like around As and Se. The second valence band 
is mainly s-like around Ga and Zn, and p-like around As and Se. 

In  the simple model of Weaire and Thorpe [a] in which only two interaction 
parameters (equivalent to yz and y3)  are used, the bonding and antibonding 
p-states give rise to two &functions, each of weight two, in the density of states. 
The &functions correspond to doubly degenerate bands which are flat through- 
out the Brillouin zone. The addition of extra interactions obviously broadens 
these bands and the 8-functions. It is interesting to see which interactions are 

Table  7 
Comparison of the energy eigenvalues of GaAs and ZnSe a t  some 
symmetry points in the Brillouin zone. The energies in (eV) are mea- 

sured relative to the top of the valence bands a t  l?,, 

state 
GaAs 

~ ~ 

tight-binding 

0 

1.6 
4.8 

-12.4 

-10.7 
-6.2 
-1.2 

1.7 
6.0 

-9.7 
-6.8 
-2.8 

2.2 
-3.1 

EPM [18] 
- ~ ~ .___ 

0 
- 12.4 

1.6 
4.8 

- 10.5 
-6.7 
-1.2 

1.6 
4.8 

-9.7 
-6.8 
-2.8 

2.2 
-4.1 

ZnSe 

tight-binding 
____- 

0 
-12.1 

2.9 
7.5 

-11.0 
-4.7 
-0.75 

3.9 
8.3 

- 10.6 
-4.8 
-1.9 

4.7 
-2.1 

EPM [19] 

0 
-12.1 

2.9 
7.5 

-10.9 
-4.9 
-0.75 

4.1 
7.9 

-10.6 
-4.8 
-1.9 

4.7 
-3.2 
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Table  8 
The average s- and p-characters for the valence bands 

of C, Si, Ge, GaAs, and ZnSe 
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most important in producing this broadening of the bands. I n  the s-p inter- 
action picture, it can be shown that if we set V,, = V,, then we immediately 
obtain, for both diamond and zincblende crystals, two sets of bands which are 
doubly degenerate and flat throughout the Brillouin zone, independent of the 
magnitude of the other nearest-neighbor interactions. I n  the directed-orbital 
representation equations (18), (19) and (27), (28) show that V,, = V,, corre- 
sponds to y5 = y6  (diamond structures) or aj = a6 (zincblendes). Therefore, 
independent of the other interactions between the orbitals, if y 5  = y s  or iy5 = as 
we will have flat p-bands in the entire Brillouin zone. The broadening of the 
p-bands can be expected to be related to V,, - VZv. In  fact, if we take second- 
nearest-neighbor interactions to be zero, then in diamond structure crystals the 
width of the doubly degenerate valence bands is exactly equal to I V,, - Tr,vl 
or 41y5 - ysl with the top of the bands at  1' and the bottom a t  X. It is obviously 
not a good approximation to take V,, = V,, or y5 = ye. I n  fact we expect the 
interaction V,, to be stronger than V,, because the overlap between the orbitals 
xo, yl is larger than the overlap between the orbitals xo and xl. This is born out 
in Tables 1, 3, and 5. 

I n  order to calculate the interaction paramcters we used the dependence of 
the energy gaps (at a few points in the Brillouin zone) on the potentials. Along 
some symmetry directions and at  some symmetry points the dependence of the 
energies on the potentials can be obtained in closed form. Here we list some of 
these relations, a number of which were first obtained in [GI. 

For the diamond structure crystals we have: 

At L the doubly degenerate eigenvalues are given by 

and the four non-degenerate states are 

27 physica (b) 68/l 
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(There is a misprint in [6] for this expression, i.e., V,, outside the square root 
is replaced by VSP.) A t  X the energies of the doubly degenerate roots are given 
by : 

E ( X &  = E ,  + (Ep - Es) - u x x  i J'zy 1 

E - E', + LT,, 1 ~ 

E(X,)  = E ,  + P ~~ f ,I:(% - Bs + u,,)2 + (2VsP)z 9 2 

When U,, is set equal to zero, the energy of the bands for k = (2z /a)  (1, k ,  0) 
are equal to  the energies a t  X. Along the symmetry direction A = (2n /a )  ( k , k , k )  
only the energy of the doubly degenerate bands can be obtained in closed form: 

E ( A )  = E ,  + U,, COS' t I V,,g, - Vzugll = 

= E', + u,, cos2 z k  f 

Along the symmetry direction A = (2z/a)  (k, 0, 0), the singly degenerate 
eigenvalues are given by 

k 
Ep - Es + u , x  * (F.w + Vm) cos JC - 2 

2 
E ( k )  = E ,  + -~ i 

The doubly degenerate eigenvalues along A are given by 

Along the symmetry direction 2 = ( 2 / a )  ( k ,  I; ,  O), the energy of the fourth 
valence band is given by 

E ( k )  = E' B +  (Ep  - E,) + U,, cos z k  - (Vxx cos2 z k  + V,, sin2 z k )  . 
Changing the signs of V,, and TTxy  gives the results for one of the conduction 
bands. 

For the zincblende crystals the eigenvalues a t  the symmetry points I', X, 
and L are given by: 

_________ 

E(rl) = ~~ 

2 
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The energies of the bands for k = (27c/a) (1, k ,  0) is equal to the energies a t  X 
when only the nearest-neighbor interactions listed above are used. 
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