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AGN at different scales from 1 Mpc to 104 pc
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Extended radio sources — shown i1s an FRII

source with an edge-brightened structure. The
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the ends.




AGN at different scales from 1 Mpc to 104 pc
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The host galaxy. Although shown as an early .
type galaxy with a smooth profile. it could also
be highly irregular with multipie nucle: as a
result of merging.

The central kpc star formaunen disk. This strong
far infrared emitting zone might be fed by a bar
structure, as seems to be the case for NGC1068.



AGN at different scales from 1 Mpc to 104 pc
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depending on the relative orientation of the
observer.



AGN at different scales from 1 Mpc to 104 pc
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The accretion disk which radiates strongiy at
UV and optical wavelengths. The high
tonization cicuds of the BLR are excited bv the
central continuum radiation field.

Inside the molecular torus — the VLBI jet
pecomes seif-absorbed closer in. and the low
lonization lines of the BLR. which might be the
corona of the accretion disk.



AGN at different scales from 1 Mpc to 104 pc
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The black hole. The Schwarzschiid raaius for a
10* M, black hole is 2 AU (10~ pc). The spin
wiil introduce twisted magneric field lines and
parucle acceleration.




Accretion disk

* Geometrically thin, optically thick
accretion disks

/4

: M MBH /4 r 3/4
I'(r)=63-10" K| = : =
MEqq 10° M, Rg

* Inflow due to viscosity, but:

1 /2 S Fy.

Re _%.I()“( ’”) ( /‘) ( G )(/)
M . | pc cm 2/ \ K

* must be turbulent viscosity,
proportional to lumb Viurb

* Geometrically thick optically thin models, where
radiation Is advected into the black hole
(radiative efficiency Is small)



Formation of |ets




1.4 Two viewpoints on the Blandford-Znajek process by which a spinning,
magnetized black hole can produce jets. (a) The hole's spin creates a swirl of
space which forces magnetic flelds threading the hole o spin. The spinning
fields' centrifugal forces then accelerate plasma to high speeds (compare with
Figure 8.7d). (b) The magnetic fields and the swirl of space logether generate a
large vollage difference between the hole's poles and equator; in effect, the hole
becomes a voltage and power generator. This voltage drives current to flow in a
circuit. The circuit carries electrical power from the black hole to the plasma,
and that power accelerales the plasma to high speeds,
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0.004 pc ’

GMVA+ALMA+GLT 35 mm /

|

1 mas 7
0.08 pc
//
/'/V/V
VLBA 7 mm | v
5 mas &
0.4 pc F
EAVN 13 mm / -
1Omas / e

0.81 pc

ALMA1.3 mm / '

5 arcsec
405 pc

CHANDRA X-rays

5 arcsec
¢

405 pc




- E

HST Optical DN
— 7 \
3800 light years 7.

_,mi..

ALMA 230 GHz

1300 light years

VLBA 43 GHz

. 0.25 light years

EHT 230 GHz
0.0063 light years




|ets

Formation of extragalactic jets

Not well understood from black hole accretion disk
Emitted from axis of rotation A—

jet
Acceleration through magnetic fields | /
Acceleration of charged particles 1/'
from strong magnetic fields and ;
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Superluminal motions
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Superluminal motions

v T T T T T T 1 1

Apparent tronsverse
velocity as o function
8=l of B and 6
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These projection effects explain: ‘ \s

the apparent superluminal motion
§ the asymmetry between the two jets, also the flux of the approaching
and receding components are affected by projection (Doppler Boosting)

These are among the methods used to find out the orientation of a source



JETTO COUN"

FERGIET R T

BOOSTING &

DE-BOOSTI

10 arcsec

@S

NG




How to make sense of this ZOQO of AGN/???
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How can we bring all of these types

of AGN Into a (single) framework!?

* The observed differences might be due to:
— Orientation

— [I1Ime evolution
— Black hole mass

— Black hole spin

— Avallabllity of fuel
— Interaction ambient medium



Unification |

*Radio observations: Radio loud/quiet

Physics: BH mass + accretion mode(?)

Spectroscopy: Narrow-line/broad-line/featureless
Physics: orientation

»Optical Images: dominance of AGN over the galaxy
Physics: degree of central activity: BH mass + Food



The Unified Model of AGNs

* Radio galaxies, quasars, blazars, | Nl
Seyferts, etc. are the same type of Region
object with different accretion » Sroad Line

modes viewed from different
angles.

| s Accretion
* Centre of a galaxy Is a black hole B 4 Disk

surrounded by an accretion disk,
clouds of gas and a dusty torus.

Obscuring
Torus

* [he energy output comes from
accretion of material onto the
black hole.




The standard model of AGN

Components:

® " Narrow Line
. @ / Region | .
» Accretion disk:

Broad Line DAL F — OIS g
Region r~ 1073 pc, n =l 0iRichm i ASH U

» Broad Line Region (BLR):

r ~ 0.0 = O/ pc, nt = OIS

v ~ few x |03 km s~

- Jorus:

r~ | = 100.pc,n ~ (0255l Keiggas
s "N * . B Narrow Line Region (NLR):
Torus o B r ~ |00—1000pc, n ~ [HO===Nl Raigine

v » v ~ few x 100 km s~
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torus

Model for the central region of an active galaxy. A super-massive
black hole in the center of the galaxy Is surrounded by an
accretion disk of infalling material. If conditions are right, the
galaxy may also possess a magnetically-confined jet which could
be the source of radio emission.



Fffects of the orientation to AGN

Blazar RLQ BLRG (FR-II)
viewing angle viewing angle viewing angle
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\ Seyfert 2
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Support for unification: hidden emission lines

Some Sy2s show broad lines in polarized light

olarization and the Hidden Nucleus of NGC 1068
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Support for unification: hidden emission lines
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Hot electrons scatter

: photons from the BLR near

the nucleus to the observer.
Dust torus shield direct

ine-of-sight to the nucleus

Hence, Sy2 look a bit like
Sy | In polarized light

Radio Quiet
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Support for unification: hidden emission lines
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Support for unification: ionization cones

NGC 5728

Hubble Space Telescope
Wide Field / Planetary Camera

Ground View HST View

The ultraviolet emission comes from the accretion disk, lighting up a cone of
slowing gas In the galaxy to the left. Only the cone of ultraviolet light can
escape from the cavity in the accretion disk where the black hole lies; in other
directions, the light is absorbed by the disk. (From STScl, modified by G. Rieke)



Support for unification: broad IR lines

25% of Sy2s show some broad component in the IR

There are searches for broad-recombination lines in the near-IR spectrum of Sy 2s, where
the extinction affects the emitted spectrum less.
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Support for unification: IR and N, excess

The column of neutral H that absorbs the soft X-
rays emitted by the nucleus is associated with the
dust In the molecular torus, and thus provides a
rough estimate of the dust content and the
attenuation this provides.

Sy2s have the largest absorption columns:
The medium 1s Compton thick, so that X-rays are
suppressed below [0 keV

Sy 2s also have colder IR colours than Syl s:
Explained if the torus is partially thick at mid-IR
wavelengths. (Perez-Garcia et al. 1998):
=2 — | 36K
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(Risaliti et al. 1999)




Support for unification: direct imaging of torus?

Core of Galaxy NGC 426l
Hubble Space Telescope

Wide Field / Planetary Camera

Ground-Based Optical/Radio Image HST Image of a Gas and Dust Disk

/
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380 Arc Seconds 17 Arc Seconds

88,000 LIGHTYEARS 400 LIGHTYEARS




General Summary

* AGN come in many forms and shapes. However, some of their
properties cross AGN-type “boundaries”

e This has led to a ''Standard Model”" of AGN

- In the centre of the AGN host Is a black hole surrounded by an accretion disk, clouds
of gas and a dusty torus, from which (sometimes) a jet emanates.

* AGN types are the results of mostly their orientation but also
different physical circumstances (why a jet?)



Galactic bulges and black holes grow up together
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Flux (photons m™ s A™)

AGN Warm Absorbers

NGC 3783
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Blustin et al. 2002



AGN ULTRA-FAST OUTFLOWS
FIOE 456

Iron Blowing in Quasar Winds

Iron
Emission

Brightness

* NuSTAR
Iron
*+ XMM-Newton Absorption

|
10 Nardini et al.

208

Energy (kiloelectron volts)




Correlation Between Black Hole Mass
and Bulge Mass

Black hole mass

One —
billion
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by Robert Gendler.




NGC 4472

v

Bs
-

NGC 5044

NGC 1399

.

NGC 4636







Cooling flows

Cooling time

: nkT
2

[ =
cool nz A (T)

Fastest cooling near the center

=~ 510" years

Cooling rate

BL" xum ~1000 M, yr’ (L, =10 erg/s)

—kT
2 [see Fabian, 1994 for review]

M =




The M87 Jet

NASA, ESA, Hubble Heritage (STScl/AURA)

a0,




NASA/CXC/A.Hobart
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AGN feedback

shockes: high
berm P@.\"&Eure .
high pressure

cavities: radio bright;
X-ray faint

filaments: X-ray bright;
Low %empera%ure;
mebal rich



PRESSURE (nkT) MAP

Milllon et al. 2010
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ENTROPY (KT/n?3) MAP

== __=_=_=_=__ Milion et al. 2010
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Buoyantly rising relativistic plasma




Entrainment of the cold gas
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OUTBURSTS NEAR AND FAR
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X-ray: NASA/CXC/Univ.Waterloo/B.McNamara; Optical: NASA/ESA/STScl/Univ. Waterloo/B.McNamara; Radio: NRAOOhio Univ./L.Birzan et al.



Do we see similar structures in other objects?

1 kpc 10 kpc 100 kpc
10°¢ erg 10°° erg 1062 eF:'g
10%2 erg/s 10% erg/s 104 erg/s

In each object the power provided by SMBH is about right!
How does SMBH know the right power?






Spherically symmetric Bondi accretion
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An example of self-regulation of AGN power

L

cooling

L., o< M i =47A(GM )’ plc’ o< 57

L,>L,. = s-increases—= L  -decreases

cooling

L <L,k = s-decreases= L  -1increases

olin

1. System with negative feedback (self-regulated)
2. Stable equilibrium is possible

But what about actual heating mechanism?



X-ray: NASA/CXC/Univ.Waterloo/B.McNamara; Optical: NASA/ESA/STSCI/Univ.WaterIoo/B.McNamara; Radio: NRAOIOhio Univ./L.Birzan et al.



Raising bubbles induce gas motions
which eventually dissipate into heat.




S, counts s~ keV™!

First Hitomi (ASTRO-H) Observation

Resolved X-ray spectrum of the core of Perseus cluster

10 =

O
l

Hitomi FWHM 4.9 eV
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[on behalf of Astro-H collaboration, Takahashi+16, Nature, submitted]



S, counts s~ keV-!
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Velocity broadening

Fe XXV He «

z =0.01756

o,= 164 km s~!
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Flux

Energy

Turbulent and bulk motions

for gas motions on small
spatial scales we expect
significant line-of-sight
velocity dispersion G,
resulting in line
broadening, but no
centroid shifts

Flux

if the spatial scale of
motions Is large, then

| we expect significant

centroid shifts



First Direct Velocity Measurements
A

1' (21 kpc) N
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line broadening
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Ecu rb/ Echerm ~ 2—6%

[On behalf of the Hitomi collaboration, PASJ 2018]
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